Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Oscillating hydraulic pressure intensifiers, of the minibooster type, are supplied at the inlet, in the primary, by low-pressure pumps and provide, at the outlet, in the secondary, high pressure to the hydraulic consumers (linear or rotary hydraulic motors under load). The pressure increase in the secondary, proportional to the amplification factor of the intensifier occurs at a much lower flow rate than the supply flow rate, and thus the two hydraulic parameters (pressure and flow rate) at the outlet of the intensifier are affected by oscillations. Because of this, the miniboosters are designed for static applications, which require low displacements of hydraulic motors. The authors aimed to expand the field of use of miniboosters by reducing the flow rate and pressure pulses with the help of hydro-pneumatic accumulators mounted on the primary and secondary of the intensifiers. If these pulsations can be mitigated, then low-pressure pump units of small dimensions, equipped with miniboosters, can be used in dynamic mining-specific applications, in complete safety, such as, for example, those involving relatively uniform displacement, under load, of some hydraulic jacks. A numerical simulation model developed in Simcenter Amesim highlights the effect of using hydro-pneumatic accumulators on the mitigation of flow rate and pressure pulsations of the oscillating hydraulic intensifiers. Numerical simulations performed with and without hydro-pneumatic accumulators mounted on the primary and secondary of the intensifier highlight the following aspects: • hydro-pneumatic accumulators can be used successfully for the partial damping of flow rate and pressure pulses, but they must be dimensioned for each specific application and work optimally for a relatively narrow pressure range; • using hydro-pneumatic accumulators can sufficiently improve the uniformity of displacement and the velocity of displacement of a hydraulic cylinder, so that it can be used in less demanding dynamic applications, as well.
Czasopismo
Rocznik
Tom
Strony
37--46
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
- National Institute of Research & Development for Optoelectronics / INOE 2000-subsidiary Hydraulics and Pneumatics Research Institute –IHP Bucharest, Romania
autor
- National Institute of Research & Development for Optoelectronics / INOE 2000-subsidiary Hydraulics and Pneumatics Research Institute –IHP Bucharest, Romania
autor
- National Institute of Research & Development for Optoelectronics / INOE 2000-subsidiary Hydraulics and Pneumatics Research Institute –IHP Bucharest, Romania
autor
- National Institute of Research & Development for Optoelectronics / INOE 2000-subsidiary Hydraulics and Pneumatics Research Institute –IHP Bucharest, Romania
- National Institute of Research & Development for Optoelectronics / INOE 2000-subsidiary Hydraulics and Pneumatics Research Institute –IHP Bucharest, Romania
Bibliografia
- [1] Yongchao X., Jinyan S.: The Design of a comparative amplifier for deep sea. Advances in Engineering Research 2018 (8th International Conference on Manufacturing Science and Engineering (ICMSE 2018)), vol. 164, pp. 493-496, ISBN: 978-1-5108-6418-4
- [2] Wang F., Gu L., Chen Y.: A hydraulic pressure-boost system based on high-speed On Off valves. IEEE/ASME Trans. Mechatronics 2013, vol. 18, no. 2, pp. 733-743, DOI: 10.1109/TMECH.2011.2182654
- [3] Zwier M. P., vanGerner H. J., Wits W.W.: Modelling and experimental investigation of a thermally driven self-oscillating pump. Applied Thermal Engineering 2017, vol. 126, pp. 1126-1133, DOI: 10.1016/j.applthermaleng.2017.02.063
- [4] Khandekar S., Dollinger N., Groll M.: Understanding operational regimes of closed loop pulsating heat pipes: an experimental study. Applied Thermal Engineering 2003, vol. 23, no. 6, pp. 707-719, DOI: 10.1016/S1359-4311(02)00237-5
- [5] Fuqiang C., Rendong W., Chaolong Y., Wei W., Wei J.: Research on Velocity Fluctuation of High Pressure and High Flow Double Booster Cylinder Hydraulic System. Hindawi Mathematical Problems in Engineering, vol. 2020, Article ID 2648508, DOI: 10.1155/2020/2648508
- [6] Dobson R.T.: Theoretical and experimental modelling of an open oscillatory heat pipe including gravity. International Journal of Thermal Sciences 2004, vol. 43, no. 2, pp. 113-119, DOI: 10.1016/j.ijthermalsci.2003.05.003
- [7] Yang F., Tadano K., Li G., Kagawa T.: Analysis of the Energy Efficiency of a Pneumatic Booster Regulator with Energy Recovery. Applied Sciences 2017, vol. 7, no. 8, paper ID 816, DOI:10.3390/app7080816
- [8] Nazarov F., Rakova E., Weber J., Vardini A.R.: A Novel Approach for Pneumatic Pressure Booster. In: Proceedings of 11th International Fluid Power Conference 11. IFK, vol. 3, pp. 222-235, DOI: 10.18154/RWTH-2018-224786
- [9] Levinsen A.: Scanwill fluid power Unique hydraulic pressure intensifier solutions. https://www.luvrahydraulik.de/fileadmin/web_data/downloads/Luvra-Hydraulik-Scanwill-0915.pdf [accessed: 13.09.2021]
- [10] Gannon M.: How can hydraulic pressure intensifiers improve your system design? https://www.fluidpowerworld.com/can-hydraulic-pressure-intensifiers-improve-system-design/ [accessed: 11.09.2021]
- [11] https://www.scanwill.com/files/documents/Scanwill-productsheet-en.pdf [accessed: 11.09.2021]
- [12] Espersen C.: Pressure Boosters in Hydraulic Systems A Solution Which Is Often Overlooked. https://nanopdf.com/download/pressure-boosters-in-hydraulic-systems_pdf [accessed: 13.09.2021]
- [13] Pioneer Machine Tools, Inc.: The increase pressure actuation system of hydraulic boosters HC series. http://www.pmt-pioneer.com/en/product-detail5.html [accessed: 13.09.2021]
- [14] https://www.minibooster.com/hc7/ [accessed: 13.09.2021]
- [15] Zardin B., Cillo G., Zavadinka P., Hanusovsky J., Borghi M.: Design and modelling of a cartridge pressure amplifier. In: Proceedings of the ASME/JSME/KSME Joint Fluids Engineering Conference 2019, vol. 1, article no. UNSP V001T01A043, DOI: 10.1115/AJKFluids2019-5474
- [16] Bartnicki A., Klimek A.: The research of hydraulic pressure intensifier for use in electric drive system. IEEE Access 2019, vol. 7, pp. 20172-77, DOI 10.1109/ACCESS.2019.2897148
- [17] Zardin B., Cillo G., Borghi M., Zavadinka P., Hanusovsky J.: Modelling and simulation of a cartridge pressure amplifier. In: Proceedings of the ASME-BATH Symposium on Fluid Power and Motion Control 2018, article no. V001T01A057
- [18] Popescu T.C., Chirita Al.P., Popescu A.I.: Increasing energy efficiency and flow rate regularity in facilities, machinery and equipment provided with high operating pressure and low flow rate hydraulic systems. In: Proceedings of 18th International Multidisciplinary Scientific GeoConference SGEM 2018, vol. 18, pp. 401-408, DOI: 10.5593/sgem2018/4.1
- [19] Popescu T.C., Chiriță Al.P., Popescu A.M.C.: Research on the assessment of flow and pressure pulses in oscillating hydraulic intensifiers. Mining Machines 2020, No. 4 (164), pp. 14-23, DOI: 10.32056/KOMAG2020.4.2
- [20] Günaydın A.C., Halkacı M., Ateş F., Halkacı H.S.: Experimental Research of the Usability on Double Acting Intensifiers in Hydroforming. In: Proceedings of the MATEC Web of Conferences 220 ICMSC 2018, 04001 (2018), https://www.matec-conferences.org/articles/matecconf/pdf/2018/79/matecconf_icmsc2018_04006.pdf [accesed:13.09.2021]
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2efd28e3-5fd1-418a-a557-669ece75ff57