Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, two new sinusoidal signal frequency estimators calculated on the basis of four equally spaced signal samples are presented. These estimators are called four-point estimators. Simulation and experimental research consisting in signal frequency estimation using the invented estimators have been carried out. Simulation has also been performed for frequency tracking. The simulation research was carried out applying the MathCAD computer program that determined samples of a sinusoidal signal disturbed by Gaussian noise. In the experimental research, sinusoidal signal samples were obtained by means of a National Instruments PCI-6024E data acquisition card and an Agilent 33220A function generator. On the basis of the collected samples, the values of four-point estimators invented by the authors and, for comparison, the values of three- and four-point estimators proposed by Vizireanu were determined. Next, estimation errors of the signal frequency were determined. It has been shown that the invented estimators can estimate a signal frequency with greater accuracy.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
359--376
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr., wzory
Twórcy
autor
- University of Zielona Góra, Institute of Metrology, Electronics and Computer Science, Szafrana 2, 65-516 Zielona Góra, Poland
autor
- University of Zielona Góra, Institute of Metrology, Electronics and Computer Science, Szafrana 2, 65-516 Zielona Góra, Poland
Bibliografia
- [1] Jacobsen, E., Kootsookos, P. (2007). Fast, accurate frequency estimators. IEEE Signal Proces. Mag., 24(3), 123-125.
- [2] Bischl, B., Ligges, U., Weihs., C. (2009). Frequency estimation by DFT interpolation: A comparison of methods. Technical Report: SFB 475, University at Dortmund.
- [3] Borkowski, J., Kania, D., Mroczka, J. (2014). Influence of A/D Quantization in an Interpolated DFT Based System of Power Control with A Small Delay. Metrol. Meas. Syst., 21(3), 423-432.
- [4] Liu, X., Ren, Y., Chu, C., Fang, W. (2015). Accurate Frequency Estimation Based On Three-Parameter Sine-Fitting With Three FFT Samples. Metrol. Meas. Syst., 22(3), 403-416.
- [5] Belega, D., Petri., D. (2017). Effect of noise and harmonics on sine-wave frequency estimation by interpolated DFT algorithms based on few observed cycles. Signal Proces., 140, 207-218.
- [6] Wang, Y., Wei, W., Xiang, J. (2017). Multipoint interpolated DFT for sine waves in short records with DC. Signal Proces., 131, 161-170.
- [7] Kammoun, M.A., Gargouri, D., Frikha, M., Ben Hamida, A. (2004). Cepstral method evaluation in speech formant frequencies estimation, Proc. of IEEE ICIT 2004. Hammamet, Tunisia, 3, 1612-1616.
- [8] Kunieda, N., Shimamura, T., Suzuki, J. (1996). Robust method of measurement of fundamental frequency by ACOLS: autocorrelation of log spectrum. Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal Proces. Atlanta, USA, 1, 232-235.
- [9] Rife, D.C., Boorstyn, R.R. (1974). Single-tone parameter estimation from discrete-time observations. IEEE T. Inform. Theory, 20(5), 591-598.
- [10] Cao, Y., Wei, G., Chen, F.J. (2012). A closed-form expanded autocorrelation method for frequency estimation of a sinusoid. Signal Proces., 92, 885-892.
- [11] Xiao, Y.C., Wei, P., Taib, H.M. (2007). Autocorrelation-based algorithm for single-frequency estimation. Signal Proces., 87, 1224-1233.
- [12] Cheveigné, A., Kawahara, H. (2002). Yin, a fundamental frequency estimator for speech and music. J. Acoust. Soc. Am., 111(4), 1917-1930.
- [13] Haton, J.P. (1981). Automatic Speech Analysis and Recognition. NATO Scientific Affairs Division, D. Reidel Publishing Company.
- [14] Petrović, P.B. (2013). A simple algorithm for simultaneous sine signal parameters estimation. J. Electrical Engineering, 64(3), 180-185.
- [15] Nielsen, J.K. (2009). Sinusoidal Parameter Estimation-A Bayesian Approach, Department of Electronic Systems, Aalborg University.
- [16] Vizireanu, D.N. (2012). A fast, simple and accurate time-varying frequency estimation method for single-phase electric power systems. Measurement, 45, 1331-1333.
- [17] Vizireanu, D.N. (2011). A simple and precise real-time four point single sinusoid signals instantaneous frequency estimation method for portable DSP based instrumentation. Measurement, 44, 500-502.
- [18] Pan, X., Zhao, H., Zou, W. et al. (2016). Frequency estimation of discrete time signals based on fast iterative algorithm. Measurement, 82, 461-465.
- [19] Duda, K., Zieliński, T.P. (2013). Efficacy of the frequency and damping estimation of a real-value sinusoid. IEEE Instrum. Meas. Mag., 16(2), 48-58.
- [20] Widrow, B., Kollar, I. (2008). Quantization Noise: Roundoff Error in Digital Computation, Signal Processing, Control, and Communications. Cambridge University Press.
- [21] Sienkowski, S. (2016). A method of m-point sinusoidal signal amplitude estimation. Meas. Sci. Rev., 16(5), 244-253.
- [22] Sienkowski, S. (2017). Three-point estimator of sinusoidal signal amplitude. Int. J. Electron., 104(6), 942-951.
- [23] Alegria, F.C., Molino-Minero-Re, E., Shariat-Panahi, S. (2012). Evaluation of a four-point sine wave frequency estimator for portable DSP based instrumentation, Measurement, 45, 1866-1871.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ef5b04e-d32f-4a4f-9457-4e0701fc2889