PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical solution of a Casson nanofluid flow and heat transfer analysis between concentric cylinders

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current investigation deals with heat transfer of a non-newtonian fluid between two concentric cylinders. To describe the behavior of non-Newtonian fluid casson fluid model is used because of its various useful applications. The governing partial differential equations suchlike continuity, momentum, energy, solute concentration and nano-particle fraction equations are transubstantiated into non-linear ordinary differential equations with the assistance of resemblance alteration. Then those are numerically solved by the very efficient shooting method. Additionally, influences of distinct involved parameters are interpreted graphically. It is adhered that the velocity field shows inclined behavior due to the increment in the values of the casson parameter, so long as enhancing the temperature.
Rocznik
Strony
25--30
Opis fizyczny
Bibliogr. 22 poz., rys., wykr.
Twórcy
autor
  • University of Gujrat, Mathematics Department, Gujrat 50700
autor
  • University of Gujrat, Mathematics Department, Gujrat 50700
  • Quaid-i-Azam University, Mathematics Department, Islamabad 44000, Pakistan
Bibliografia
  • [1] M. Y. Malik, A. Hussain, S. Nadeem, T. Hayat, Flow of a third grade fluid between coaxial cylinders with variable viscosity, Zeitschrift für Naturforschung A 64 (9-10) (2009) 588–596.
  • [2] D. Vieru, M. Nazar, C. Fetecau, C. Fetecau, New exact solutions corresponding to the first problem of stokes for oldroyd-b fluids, Computers & Mathematics with Applications 55 (8) (2008) 1644–1652.
  • [3] W. Tan, T. Masuoka, Stokes’ first problem for an oldroyd-b fluid in a porous half space, Physics of Fluids 17 (2) (2005) 023101.
  • [4] M. Y. Malik, A. Hussain, S. Nadeem, Analytical treatment of an oldroyd 8-constant fluid between coaxial cylinders with variable viscosity, Communications in Theoretical Physics 56 (5) (2011) 933.
  • [5] T. Hayat, S. Nadeem, A. M. Siddiqui, S. Asghar, An oscillating hydromagnetic non-newtonian flow in a rotating system, Applied mathematics letters 17 (5) (2004) 609–614.
  • [6] A. Shahzad, R. Ali, Approximate analytic solution for magnetohydrodynamic flow of a non-newtonian fluid over a vertical stretching sheet, Can J Appl Sci 2 (1) (2012) 202–215.
  • [7] M. Y. Malik, A. Hussain, S. Nadeem, Analytical treatment of an oldroyd 8-constant fluid between coaxial cylinders with variable viscosity, Communications in Theoretical Physics 56 (5) (2011) 933.
  • [8] S. Nadeem, R. U. Haq, Z. Khan, Numerical solution of non-newtonian nanofluid flow over a stretching sheet, Applied Nanoscience 4 (5) (2014) 625–631.
  • [9] M. Hameed, S. Nadeem, Unsteady mhd flow of a non-newtonian fluid on a porous plate, Journal of Mathematical Analysis and Applications 325 (1) (2007) 724–733.
  • [10] M. Malik, I. Khan, A. Hussain, T. Salahuddin, Mixed convection flow of mhd eyring-powell nanofluid over a stretching sheet: A numerical study, AIP advances 5 (11) (2015) 117118.
  • [11] R. U. Haq, S. Nadeem, Z. Khan, N. Noor, Mhd squeezed flow of water functionalized metallic nanoparticles over a sensor surface, Physica E: Low-dimensional Systems and Nanostructures 73 (2015) 45–53.
  • [12] S. Nadeem, N. S. Akbar, Peristaltic flow of walter’s b fluid in a uniform inclined tube, Journal of Biorheology 24 (1) (2010) 22–28.
  • [13] M. Malik, M. Bibi, F. Khan, T. Salahuddin, Numerical solution of williamson fluid flow past a stretching cylinder and heat transfer with variable thermal conductivity and heat generation/absorption, AIP Advances 6 (3) (2016) 035101.
  • [14] S. Nadeem, R. U. Haq, C. Lee, Mhd flow of a casson fluid over an exponentially shrinking sheet, Scientia Iranica 19 (6) (2012) 1550–1553.
  • [15] A. Rehman, S. Achakzia, S. Nadeem, S. Iqbal, Stagnation point flow of eyring powell fluid in a vertical cylinder with heat transfer, Journal of Power Technologies 96 (1) (2016) 57–62.
  • [16] M. Viloria Ochoa, Analysis of drilling fluid rheology and tool joint effect to reduce errors in hydraulics calculations, Ph.D. thesis, Texas A&M University (2006).
  • [17] R. Ellahi, Effects of the slip boundary condition on non-newtonian flows in a channel, Communications in Nonlinear Science and Numerical Simulation 14 (4) (2009) 1377–1384.
  • [18] R. Ellahi, A. Riaz, Analytical solutions for mhd flow in a third-grade fluid with variable viscosity, Mathematical and Computer Modelling 52 (9- 10) (2010) 1783–1793.
  • [19] M. Sheikholeslami, D. D. Ganji, M. Y. Javed, R. Ellahi, Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model, Journal of Magnetism and Magnetic Materials 374 (2015) 36–43.
  • [20] M. Sheikholeslami, M. G. Bandpy, R. Ellahi, A. Zeeshan, Simulation of mhd cuo–water nanofluid flow and convective heat transfer considering lorentz forces, Journal of Magnetism and Magnetic Materials 369 (2014) 69–80.
  • [21] M. Malik, I. Khan, A. Hussain, T. Salahuddin, Mixed convection flow of mhd eyring-powell nanofluid over a stretching sheet: A numerical study, AIP advances 5 (11) (2015) 117118.
  • [22] R. U. Haq, S. Nadeem, Z. Khan, N. Noor, Mhd squeezed flow of water functionalized metallic nanoparticles over a sensor surface, Physica E: Low-dimensional Systems and Nanostructures 73 (2015) 45–53.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ef44856-2dc6-48c3-94cf-725c1f9670a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.