Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
One of the most interesting categories of artifacts for archaeometallurgical research includes deposits of bronze items, so-called “metallurgists hoards”. They contain, aside of final products, many fragments of raw material and, moreover, metallurgical tools. An important source for the studies on the history of metallurgical technology is hoard from Przybysław, Greater Poland district. Thus, the aim of the work is the identification and interpretation of bronze-working practices and strategies adopted by prehistoric communities of the Late Bronze Age and the Early Iron Age (ca. 600 BC). The examined objects are characterized in terms of their design, structure, and chemical composition. The methods chosen for the studies of artifacts include: metallographic macro- and microscopic observations using optical microscopy (OM) and scanning electron microscopy (SEM), the analysis of chemical composition with the methods of energy dispersive X-ray spectroscopy (EDS), and X-ray fluorescence (ED-XRF). The thermodynamic analysis of the alloys was performed on the basis of the CALPHAD method. The experimental melts allowed to verify the theoretical considerations and to determine the characteristic temperatures of changes. The old casting technology can be analyzed basing on computer modeling and computer simulation methods. Simulations in the MAGMASOFT® software are a good example to illustrate how to fill a mould cavity with a molten bronze for a hoop ornament. It is also an appropriate tool to determine temperature distribution in a mould. The simulations also show the possible disadvantages with this old technology.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1125--1136
Opis fizyczny
Bibliogr. 33 poz., fot., rys., tab.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Foundry Engineering, Historical Layers Research Centre, Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Foundry Engineering, Historical Layers Research Centre, Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Non Ferrous Metals, Historical Layers Research Centre, Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Foundry Engineering, Historical Layers Research Centre, Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Foundry Engineering, Historical Layers Research Centre, Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Foundry Engineering, Historical Layers Research Centre, Kraków, Poland
autor
- Archaeological Museum in Poznań, Poznań, Poland
autor
- Archaeological Museum in Poznań, Poznań, Poland
Bibliografia
- [1] E. Pernicka, Provenance determination of metal artifacts: Methodological considerations, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 14 (1), 24-29 (1986).
- [2] J. Lutz, E. Pernicka, E. Energy dispersive x-ray fluorescence analysis of ancient copper alloys: Empirical values for precision and accuracy, Archaeometry 38 (2), 313-323 (1996).
- [3] B.S. Ottaway, Innovation, production and specialization in early prehistoric copper metallurgy, European Journal of Archaeology 4 (1), 87-112 (2001).
- [4] E. Pernicka, Archaeometallurgy: Examples of the application of scientific methods to the provenance of archaeological metal objects, in: M. Martini, M. Milazzo, M. Piacentini (Eds.), Physics methods in archaeometry, Oxford: IOS Press (2004).
- [5] T.L. Kienlin, Copper and Bronze Age: Bronze Age metalworking in context, in: H. Fokkens and A. Harding (Eds.),The Oxford Handbook of the European Bronze Age, Oxford, Oxford University Press (2013)
- [6] V. Lyubomirova, R. Djingova, I. Kuleff, Comparison of analytical techniques for analysis of archaeological bronze, Archaeometry, 1-10 (2014).
- [7] M. Radivojević, B.W. Roberts, E. Pernicka, Z. Stos-Gale, M. Martinón-Torres, T. Rehren, P. Bray, D. Brandherm, J. Ling, J. Mei, H. Vandkilde, H. Kristiansen, S.J. Shennan, C. Broodbank, The Provenance, Use, and Circulation of Metals in the European Bronze Age: The State of Debate, Journal of Archaeological Research (2018). DOI: https://doi.org/10.1007/s10814-018-9123-9
- [8] N.H. Gale, Z.A. Stos-Gale, Bronze Age Copper Sources in the Mediterranean: A New Approach, Science 216 (4541), 11-19 (1982).
- [9] P. Northover, Alloy design in the Bronze Age, in: J.E. Jones (Ed.), Aspects of ancient mining and metallurgy, Bangor: University College of North Wales (1988).
- [10] B.S. Ottaway, B.W. Roberts, The emergence of metallurgy, in: A. Jones (Ed.), Prehistoric Europe: Theory and practice, London: Blackwell (2008).
- [11] P.J. Bray, A.M. Pollard, A new interpretative approach to the chemistry of copper-alloy objects: Source, recycling and technology, Antiquity 86 (333), 853-867 (2012). DOI: https://doi.org/10.1017/S0003598X00047967
- [12] E. Pernicka, Provenance Determination of Archaeological Metal Objects, in: Roberts B., Thornton C. (Eds.) Archaeometallurgy in Global Perspective. Springer, New York, NY (2014). DOI: https://doi.org/10.1007/978-1-4614-9017-3_11
- [13] P. Bray, A. Cuénod, C. Gosden, P. Hommel, R. Liu, A.M. Pollard, Form and flow: the ‘karmic cycle’ of copper, Journal of Archaeological Science 56, 202-209 (2015). DOI: https://doi.org/10.1016/j.jas.2014.12.013.
- [14] C.J. Davey, The early history of lost-wax casting, in: J. Mei and Th. Rehren (Eds.), Metallurgy and Civilisation: Eurasia and Beyond: Proceedings of the 6th International Conference on the Beginnings of the Use of Metals and Alloys (BUMAVI), London: Archetype (2009).
- [15] S. Rzadkosz, J. Zych, A. Garbacz-Klempka, M. Kranc, J. Kozana, M. Piękoś, J. Kolczyk, Ł. Jamrozowicz, T. Stolarczyk, Copper Alloys in Investment Casting Technology, Metalurgija 54 (1), 293-296 (2015).
- [16] A. Garbacz-Klempka, J.S. Suchy, Z. Kwak, T. Tokarski, R. Klempka, T. Stolarczyk, Study of investment casting technology from Bronze Age: casting workshop in Grzybiany (southwest Poland), Archives of Metallurgy and Materials 63 (2), 615-624 (2018).
- [17] A. Garbacz-Klempka, Ł. Kowalski, J. Kozana, J. Gackowski, M. Perek-Nowak, G. Szczepańska, M. Piękoś, Archaeometallurgical investigations of the Early Iron Age casting workshop at Kamieniec. A preliminary study, Archives of Foundry Engineering 16 (3), 29-34 (2016). 1136
- [18] E. Ciliberto, G.G. Spoto, Modern analytical methods in art and archaeology, Toronto, 2000.
- [19] A. Garbacz-Klempka, Z. Kwak, P. Żak, M. Szucki, D. Ścibior, T. Stolarczyk, K. Nowak, Reconstruction of the casting technology in the Bronze Age on the basis of investigations and visualisation of casting moulds, Archives of Foundry Engineering 17 (3), 184-190 (2017).
- [20] A. Garbacz-Klempka, J.S. Suchy, Z. Kwak, P. Długosz, T. Stolarczyk, Casting technology experiment and computer modeling of ornaments from Bronze Age, Archives of Metallurgy and Materials 63 (3), 1329-1337 (2018).
- [21] J. Kostrzewski, Przewodnik po dziale przedhistorycznych Muzeum im. Mielżyńskich, 29 p. Poznań (1918)
- [22] Inventory book of Department of Archaeology, Mielżyński Museum 1885-1920, pp. 122-123, inv. No 1913:2.
- [23] K. Kristansen, Europe before history. Cambridge (1998).
- [24] M. Trachsel, Untersuchungen zur relativen und absoluten Chronologie der Hallstattzeit, Universitätsforschungen für prähistorische Archäologie 104, Teil 1-2, Bonn: Habelt (2004).
- [25] K. Dzięgielewski, A. Garbacz-Klempka, K. Tunia, A strange specimen in an unusual place. The early iron age ring of a “Pomeranian” breastplate from smolice, oświęcim district (southern Poland), (Nietypowy okaz w nietypowym miejscu: Pierścień „pomorskiego” napierśnika z wczesnej epoki żelaza ze Smolic, pow. Oświęcim (południowa Polska)), Študijné zvesti Archeologického ústavu SAV, 1, 127-1387 (2019). DOI: https://doi.org/10.31577/szausav.2019.suppl.1.
- [26] W. Blajer Skarby przedmiotów metalowych z epoki brązu i wczesnej epoki żelaza na ziemiach polskich. Kraków (2001).
- [27] N. Saunders, A.P. Miodownik, The Cu-Sn (copper-tin) system, Bulletin of Alloy Phase Diagrams 11 (3), 278-287 (1990). DOI: https://doi.org/10.1007/BF03029299
- [28] B. Korojy, L. Ekbom, H. Fredriksson, Microsegregation and Solidification Shrinkage of Copper-Lead Base Alloys, Adv. Mater. Sci. Eng. 1-9 (2009). DOI: https://doi.org/10.1155/2009/627937
- [29] P.C. Chaubal, M. Nagamori, Thermodynamics for arsenic and antimony in copper matte converting-computer simulation, Metallurgical and Materials Transactions B 19B (4), 547-556 (1988). DOI: https://doi.org/10.1007/BF02659145
- [30] C. Chen, L, Zhang, S. Johanshahi, Thermodynamic modeling of arsenic in copper smelting processes, Metallurgical and Materials Transactions B 41B (6), 1175-1185 (2010). DOI: https://doi.org/10.1007/s11663-010-9431-z
- [31] E. Požega, L. Gomidželović, D. Živković, V. Trujić, The impurities behaviour analysis in thermodynamic simulation models in copper metallurgy, Journal of the University of Chemical Technology and Metallurgy 45 (2), 189-194 (2010).
- [32] A. Roine, H. Jalkanen, Activities of arsenic, antimony, bismuth, and lead in copper mattes, Metallurgical and Materials Transactions B, 16B (1), 129-41 (1985).
- [33] A. Yazawa, Distribution of various elements between copper, matte, and slag, Erzmetall.
Uwagi
1. The financial support of the National Science Centre, Poland: 2017/26/E/HS3/00656 is acknowledged.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2eef5c6a-d706-4771-94dd-2fcf94391420