PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis, photophysical properties and electrochemical polymerization of a new blue fluorescent compound based on 3,4-ethylenedioxythiophene moiety

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
New monomer, 4,4’-[(2,3-dihydrothieno[3,4-b][1,4]diorin-5-yl)vinyl]-1,1’-biphenyl (BPE), was synthesized, characterized and polymerized electrochemically via a potentiostatic method. The corresponding polymer poly(4,4’-[(2,3-dihydrothieno[3,4-b][1,4] diorin-5-yl)vinyl]-1,1’-biphenyl) (PBPE) obtained as a thin-layer film, was characterized by cyclic voltammetry, X-ray photoelectron spectroscopy, infrared spectroscopy and UV-Vis spectroscopy. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of the obtained polymer were determined from cyclic voltammograms as –4.89 eV and –3.81 eV, respectively. Its optical and electrochemical band gaps were calculated, and found to be 1.08 eV and 1.49 eV, respectively. PBPE can be used as a donor material in bilayer organic photovoltaic solar cells having PCBM as acceptor material.
Wydawca
Rocznik
Strony
151--158
Opis fizyczny
Bibliogr. 50 poz., tab., rys.
Twórcy
  • Laboratoire de Chimie des Matériaux Constantine, Université des Frères Mentouri Constantine 1, 25017 Constantine, Algérie
  • Laboratoire de Chimie des Matériaux Constantine, Université des Frères Mentouri Constantine 1, 25017 Constantine, Algérie
  • Université Mohamed Cherif Messaadia, 41000 Souk Ahras, Algérie
  • Laboratoire de Chimie des Matériaux Constantine, Université des Frères Mentouri Constantine 1, 25017 Constantine, Algérie
Bibliografia
  • [1] FORREST S.R., Nature, 428 (2004), 911.
  • [2] SHINAR R., SHINAR J., Organic Electronics in Sensors and Biotechnology, McGraw-Hill, New York, 2009.
  • [3] CHIRVASE D., CHIGUVARE Z., KNIPPER M., PARISI J., DYAKONOV V., HUMMELEN J.C., J. Appl. Phys., 93 (2003), 3376.
  • [4] TANG C.W., Appl. Phys. Lett., 48 (1986), 183.
  • [5] BUNDGAARD E., KREBS F.C., Sol. Energ. Mat. Sol. C., 91 (2007), 954.
  • [6] DENNLER G., SCHARBER M.C., BRABEC C.J., Adv. Mater., 21 (2009), 1323.
  • [7] SCHARBER M.C., MÜHLBACHER D., KOPPE M., DENK P., WALDAUF C., HEEGER A.J., BRABEC C.J., Adv. Mater., 18 (2006), 789.
  • [8] HOU J., GUO X., Active Layer Materials for Organic Solar Cells, in: CHOY W.C.H. (Ed.), Organic Solar Cells, Green Energy and Technology, Springer-Verlag, London, 2013, p. 17.
  • [9] HUDHOMME P., EPJ Photovoltaics, 4 (2013), 40401.
  • [10] KAVEETA P.J., PRASAD R.G., VENKATA S.J., APARNA R.S., PHANI A.R., Nano. Biomed. Eng., 4 (2012), 144.
  • [11] BURROUGHES J.H., BRADLEY D.D.C., BROWN A.R.., MARKS R.N., MACKAY K., FRIEND R.H., BURNS P.L., HOLMES A.B., Nature, 347 (1990), 539.
  • [12] SARICIFTCI N.S., BRAUN D., ZHANG C., Appl. Phys. Lett., 62 (1993), 585.
  • [13] WONG W.W.H., BANAL J.L., Poly(arylene-vinylene)s, in: KOBAYASHI S., MÜLLEN K. (Eds.), Encyclopedia of Polymeric Nanomaterials, Springer, Berlin, 2015, p. 1.
  • [14] SPANGGAARD H., KREBS F.C., Sol. Energ. Mat. Sol. C., 83 (2004), 125.
  • [15] COLLADET K., FOURIER S., CLEIJ T.J., LUTSEN L., GELAN J., VANDERZANDE D., HUONG-NGUYEN L., NEUGEBAUER H., SARICIFTCI S., AGUIRRE A., JANSSEN G., GOOVAERTS E., Macromolecules, 40 (2007), 65.
  • [16] CHO N.S., PARK J.-H., LEE S.-K., LEE J., SHIM H.-K., PARK M.-J., HWANG D.-H., JUNG B.-J., Macromolecule, 39 (2006), 177.
  • [17] THOMPSON B.C., KIM Y.-G., REYNOLDS J.R., Macromolecules, 38 (2005), 5359.
  • [18] SUN X.B., ZHOU Y.H., WU W.C., LIU Y.Q., TIAN W.J., YU G., QIU W.F., CHEN S.Y., ZHU D.B., J. Phys. Chem. B., 110 (2006), 7702.
  • [19] ZHENG M., SARKER A.M., GÜREL E.E., LAHTI P.M., KARASZ F.E., Macromolecules, 33 (2000), 7426.
  • [20] SUNG-HO J., KIM-YEON K., YOUNG J.K., LEE K., GAL Y.-S., J. Am. Chem. Soc., 126 (2004), 2474.
  • [21] YAMATO H., OHWA M., WERNET W., J. Electroanal. Chem., 397 (1995), 163.
  • [22] STRAKOSAS X., SESSOLO M., HAMA A., RIVNAY J., STAVRINIDOU E., MALLIARAS G.G., OWENS R.M., J. Mater. Chem. B, 2 (2014), 2537.
  • [23] APPERLOO J.J., GROENENDAAL L.B., VERHEYEN H., JAYAKANNAN M., JANSSEN R.A.J., DKHISSI A., BELJONNE D., LAZZARONI R., BRÈDAS J.L., Chemistry: Eur. J., 8 (2002), 2384.
  • [24] TURBIEZ M., FRÈRE P., RONCALI J., J. Org. Chem., 68 (2003), 5357.
  • [25] GROENENDAAL L., JONAS F., FREITAG D., PIELARTZIK H.J., REYNOLDS R., Adv. Mater., 12 (2000), 481.
  • [26] LI W., MICHINOBU T., Polym. Chem.-UK, 7 (2016), 3165.
  • [27] SOTZING G.A., THOMAS C.A., REYNOLDS J.R., Macromolecules, 31 (1998), 3750.
  • [28] MARTENS H.C.F., BLOM P.W.M., SCHOO H.F.M., Phys. Rev. B, 61 (2000), 7489.
  • [29] TAJIMA K., SUZUKI Y., HASHIMOTO K., J. Phys. Chem. C, 112 (2008), 8507.
  • [30] NGUYEN D.N., YOON H., Polymers-Basel, 8 (2016), 118.
  • [31] BABU K.F., SENTHILKUMAR R., NOEL M., KULANDAINATHAN M.A., Synth. Met., 159 (2009), 1353.
  • [32] ALESSI P.J., CARTE E.C., FAIRCHIL M.D., HUNT R.W.G., MCCAMY C.S., KRANICZ B., MOORE J.R., MORREN L., NOBBS J.H., OHNO Y., POINTER M.R., RICH D.C., ROBERTSON A.R., SCHANDA J.D., SÈVE R., TREZONA P.W., WITT K., YAGUCHI H., CIE 15: Technical Report Colorimetry, 3rd ed., Washington, 2004.
  • [33] FUCHIGAMI T., ATOBE M., INAGI S., Fundamentals and Applications of Organic Electrochemistry: Synthesis, Materials, Devices, John Wiley & Sons, 2014.
  • [34] HU B., LV X., SUN J., BIAN G., OUYANG M., FU Z., WANG P., ZHANG C., Org. Electron., 14 (2013), 1521.
  • [35] FERRARIS J.P., HARILON T.R., Polymer, 30 (1989), 1319.
  • [36] MCCREERY R.L., in: KISSINGER P.T., HEINEMAN W.R. (Ed.), Laboratory Techniques in Electroanalytical Chemistry, Dekker, New York, 1996, Chap. 10.
  • [37] MCCREERY R.L., in: BARD A.J. (Ed.), Electroanalytical Chemistry, Dekker, New York, 1991, p. 221.
  • [38] PÉREZ GUARÌN S.A., SKENE W.G., Mater. Lett., 61 (2007), 5102.
  • [39] GÜNEŞ A., CIHANER A., ÖNAL A.M., Electrochim. Acta., 89 (2013), 339.
  • [40] ONODA M., PARK D.H., NAKAYAMA H., AMAKAWA K., YOSHINO K., IEE Japan, 111-A (1991), 9.
  • [41] DJUROVICH P.I., MAYO E.I., FORREST S.R., THOMPSON M.E., Org. Electron., 10 (2009), 515.
  • [42] AHMIDA M.M., EICHBORN S.H., ECS T., 25 (2010), 1.
  • [43] BREDAS J.L., SILBEY R., BOUDREUX D.S., CHANCE R.R., J. Am. Chem. Soc., 105 (1983), 6555.
  • [44] FRIEND R.H., BRADLEY D.D.C., TOWNSEND P.D., J. Phys. D: Appl. Phys., 20 (1987), 1367.
  • [45] YOSHINO K., TAKIGUCHI T., HAYASHI S., PARK D.H., SUGIMOTO R.I., Jpn. J. Appl. Phys., 25 (1986), 881.
  • [46] TURBIEZ M., FRÈRE P., BLANCHARD P., RONCALI J., Tetrahedron Lett., 41 (2000), 5521.
  • [47] THOMPSON B.C., FRÉCHE J.M., Angew. Chem. Int. Ed., 47 (2008), 58.
  • [48] SCHULZ G.L., URDANPILLETA M., FITZNER R., BRIER E., MENA-OSTERITZ E., REINOLD E., BÄUERLE P., Beilstein J. Nanotechnol., 4 (2013), 680.
  • [49] WANG T., PEARSON A.J., LIDZEY D.G., J. Mater. Chem. C., 1 (2013), 7266.
  • [50] BIJLEVELD J.C., SHAHID M., GILOT J., WIENK M.M., JANSSEN R.A.J., Adv. Funct. Mater., 19 (2009), 3262.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2eecbd5b-3ad4-41de-89e2-607655edbdaf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.