Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
New monomer, 4,4’-[(2,3-dihydrothieno[3,4-b][1,4]diorin-5-yl)vinyl]-1,1’-biphenyl (BPE), was synthesized, characterized and polymerized electrochemically via a potentiostatic method. The corresponding polymer poly(4,4’-[(2,3-dihydrothieno[3,4-b][1,4] diorin-5-yl)vinyl]-1,1’-biphenyl) (PBPE) obtained as a thin-layer film, was characterized by cyclic voltammetry, X-ray photoelectron spectroscopy, infrared spectroscopy and UV-Vis spectroscopy. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of the obtained polymer were determined from cyclic voltammograms as –4.89 eV and –3.81 eV, respectively. Its optical and electrochemical band gaps were calculated, and found to be 1.08 eV and 1.49 eV, respectively. PBPE can be used as a donor material in bilayer organic photovoltaic solar cells having PCBM as acceptor material.
Wydawca
Czasopismo
Rocznik
Tom
Strony
151--158
Opis fizyczny
Bibliogr. 50 poz., tab., rys.
Twórcy
autor
- Laboratoire de Chimie des Matériaux Constantine, Université des Frères Mentouri Constantine 1, 25017 Constantine, Algérie
autor
- Laboratoire de Chimie des Matériaux Constantine, Université des Frères Mentouri Constantine 1, 25017 Constantine, Algérie
- Université Mohamed Cherif Messaadia, 41000 Souk Ahras, Algérie
autor
- Laboratoire de Chimie des Matériaux Constantine, Université des Frères Mentouri Constantine 1, 25017 Constantine, Algérie
Bibliografia
- [1] FORREST S.R., Nature, 428 (2004), 911.
- [2] SHINAR R., SHINAR J., Organic Electronics in Sensors and Biotechnology, McGraw-Hill, New York, 2009.
- [3] CHIRVASE D., CHIGUVARE Z., KNIPPER M., PARISI J., DYAKONOV V., HUMMELEN J.C., J. Appl. Phys., 93 (2003), 3376.
- [4] TANG C.W., Appl. Phys. Lett., 48 (1986), 183.
- [5] BUNDGAARD E., KREBS F.C., Sol. Energ. Mat. Sol. C., 91 (2007), 954.
- [6] DENNLER G., SCHARBER M.C., BRABEC C.J., Adv. Mater., 21 (2009), 1323.
- [7] SCHARBER M.C., MÜHLBACHER D., KOPPE M., DENK P., WALDAUF C., HEEGER A.J., BRABEC C.J., Adv. Mater., 18 (2006), 789.
- [8] HOU J., GUO X., Active Layer Materials for Organic Solar Cells, in: CHOY W.C.H. (Ed.), Organic Solar Cells, Green Energy and Technology, Springer-Verlag, London, 2013, p. 17.
- [9] HUDHOMME P., EPJ Photovoltaics, 4 (2013), 40401.
- [10] KAVEETA P.J., PRASAD R.G., VENKATA S.J., APARNA R.S., PHANI A.R., Nano. Biomed. Eng., 4 (2012), 144.
- [11] BURROUGHES J.H., BRADLEY D.D.C., BROWN A.R.., MARKS R.N., MACKAY K., FRIEND R.H., BURNS P.L., HOLMES A.B., Nature, 347 (1990), 539.
- [12] SARICIFTCI N.S., BRAUN D., ZHANG C., Appl. Phys. Lett., 62 (1993), 585.
- [13] WONG W.W.H., BANAL J.L., Poly(arylene-vinylene)s, in: KOBAYASHI S., MÜLLEN K. (Eds.), Encyclopedia of Polymeric Nanomaterials, Springer, Berlin, 2015, p. 1.
- [14] SPANGGAARD H., KREBS F.C., Sol. Energ. Mat. Sol. C., 83 (2004), 125.
- [15] COLLADET K., FOURIER S., CLEIJ T.J., LUTSEN L., GELAN J., VANDERZANDE D., HUONG-NGUYEN L., NEUGEBAUER H., SARICIFTCI S., AGUIRRE A., JANSSEN G., GOOVAERTS E., Macromolecules, 40 (2007), 65.
- [16] CHO N.S., PARK J.-H., LEE S.-K., LEE J., SHIM H.-K., PARK M.-J., HWANG D.-H., JUNG B.-J., Macromolecule, 39 (2006), 177.
- [17] THOMPSON B.C., KIM Y.-G., REYNOLDS J.R., Macromolecules, 38 (2005), 5359.
- [18] SUN X.B., ZHOU Y.H., WU W.C., LIU Y.Q., TIAN W.J., YU G., QIU W.F., CHEN S.Y., ZHU D.B., J. Phys. Chem. B., 110 (2006), 7702.
- [19] ZHENG M., SARKER A.M., GÜREL E.E., LAHTI P.M., KARASZ F.E., Macromolecules, 33 (2000), 7426.
- [20] SUNG-HO J., KIM-YEON K., YOUNG J.K., LEE K., GAL Y.-S., J. Am. Chem. Soc., 126 (2004), 2474.
- [21] YAMATO H., OHWA M., WERNET W., J. Electroanal. Chem., 397 (1995), 163.
- [22] STRAKOSAS X., SESSOLO M., HAMA A., RIVNAY J., STAVRINIDOU E., MALLIARAS G.G., OWENS R.M., J. Mater. Chem. B, 2 (2014), 2537.
- [23] APPERLOO J.J., GROENENDAAL L.B., VERHEYEN H., JAYAKANNAN M., JANSSEN R.A.J., DKHISSI A., BELJONNE D., LAZZARONI R., BRÈDAS J.L., Chemistry: Eur. J., 8 (2002), 2384.
- [24] TURBIEZ M., FRÈRE P., RONCALI J., J. Org. Chem., 68 (2003), 5357.
- [25] GROENENDAAL L., JONAS F., FREITAG D., PIELARTZIK H.J., REYNOLDS R., Adv. Mater., 12 (2000), 481.
- [26] LI W., MICHINOBU T., Polym. Chem.-UK, 7 (2016), 3165.
- [27] SOTZING G.A., THOMAS C.A., REYNOLDS J.R., Macromolecules, 31 (1998), 3750.
- [28] MARTENS H.C.F., BLOM P.W.M., SCHOO H.F.M., Phys. Rev. B, 61 (2000), 7489.
- [29] TAJIMA K., SUZUKI Y., HASHIMOTO K., J. Phys. Chem. C, 112 (2008), 8507.
- [30] NGUYEN D.N., YOON H., Polymers-Basel, 8 (2016), 118.
- [31] BABU K.F., SENTHILKUMAR R., NOEL M., KULANDAINATHAN M.A., Synth. Met., 159 (2009), 1353.
- [32] ALESSI P.J., CARTE E.C., FAIRCHIL M.D., HUNT R.W.G., MCCAMY C.S., KRANICZ B., MOORE J.R., MORREN L., NOBBS J.H., OHNO Y., POINTER M.R., RICH D.C., ROBERTSON A.R., SCHANDA J.D., SÈVE R., TREZONA P.W., WITT K., YAGUCHI H., CIE 15: Technical Report Colorimetry, 3rd ed., Washington, 2004.
- [33] FUCHIGAMI T., ATOBE M., INAGI S., Fundamentals and Applications of Organic Electrochemistry: Synthesis, Materials, Devices, John Wiley & Sons, 2014.
- [34] HU B., LV X., SUN J., BIAN G., OUYANG M., FU Z., WANG P., ZHANG C., Org. Electron., 14 (2013), 1521.
- [35] FERRARIS J.P., HARILON T.R., Polymer, 30 (1989), 1319.
- [36] MCCREERY R.L., in: KISSINGER P.T., HEINEMAN W.R. (Ed.), Laboratory Techniques in Electroanalytical Chemistry, Dekker, New York, 1996, Chap. 10.
- [37] MCCREERY R.L., in: BARD A.J. (Ed.), Electroanalytical Chemistry, Dekker, New York, 1991, p. 221.
- [38] PÉREZ GUARÌN S.A., SKENE W.G., Mater. Lett., 61 (2007), 5102.
- [39] GÜNEŞ A., CIHANER A., ÖNAL A.M., Electrochim. Acta., 89 (2013), 339.
- [40] ONODA M., PARK D.H., NAKAYAMA H., AMAKAWA K., YOSHINO K., IEE Japan, 111-A (1991), 9.
- [41] DJUROVICH P.I., MAYO E.I., FORREST S.R., THOMPSON M.E., Org. Electron., 10 (2009), 515.
- [42] AHMIDA M.M., EICHBORN S.H., ECS T., 25 (2010), 1.
- [43] BREDAS J.L., SILBEY R., BOUDREUX D.S., CHANCE R.R., J. Am. Chem. Soc., 105 (1983), 6555.
- [44] FRIEND R.H., BRADLEY D.D.C., TOWNSEND P.D., J. Phys. D: Appl. Phys., 20 (1987), 1367.
- [45] YOSHINO K., TAKIGUCHI T., HAYASHI S., PARK D.H., SUGIMOTO R.I., Jpn. J. Appl. Phys., 25 (1986), 881.
- [46] TURBIEZ M., FRÈRE P., BLANCHARD P., RONCALI J., Tetrahedron Lett., 41 (2000), 5521.
- [47] THOMPSON B.C., FRÉCHE J.M., Angew. Chem. Int. Ed., 47 (2008), 58.
- [48] SCHULZ G.L., URDANPILLETA M., FITZNER R., BRIER E., MENA-OSTERITZ E., REINOLD E., BÄUERLE P., Beilstein J. Nanotechnol., 4 (2013), 680.
- [49] WANG T., PEARSON A.J., LIDZEY D.G., J. Mater. Chem. C., 1 (2013), 7266.
- [50] BIJLEVELD J.C., SHAHID M., GILOT J., WIENK M.M., JANSSEN R.A.J., Adv. Funct. Mater., 19 (2009), 3262.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2eecbd5b-3ad4-41de-89e2-607655edbdaf