PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Noise and optical spectroscopy of single junction silicon solar cell

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Noise spectroscopy as a highly sensitive method for non-destructive diagnostics of semiconductor devices was applied to solar cells based on crystalline silicon with a view to evaluating the quality and reliability of this solar cell type. The experimental approach was used in a reverse-biased condition where the internal structure of solar cells, as well as pn-junction itself, was electrically stressed and overloaded by a strong electric field. This gave rise to a strong generation of a current noise accompanied by local thermal instabilities, especially in the defect sites. It turned out that local temperature changes could be correlated with generation of flicker noise in a wide frequency range. Furthermore, an electrical breakdown in a non-stable form also occurred in some specific local regions what created micro-plasma noise with a two-level current fluctuation in the form of a Lorentzian-like noise spectrum. The noise research was carried out on both of these phenomena in combination with the spectrally-filtered electroluminescence mapping in the visible/near-infrared spectrum range and the dark lock-in infrared thermography in the far-infrared range. Then the physical origin of the light emission from particular defects was searched by a scanning electron microscope and additionally there was performed an experimental elimination of one specific defect by the focused ion beam milling.
Rocznik
Strony
303--316
Opis fizyczny
Bibliogr. 33 poz., rys., wykr., wzory
Twórcy
  • Brno University of Technology, Faculty of Electrical Engineering and Communications, Technicka 3058/10, 616 00 Brno, Czech Republic
autor
  • Brno University of Technology, Faculty of Electrical Engineering and Communications, Technicka 3058/10, 616 00 Brno, Czech Republic
Bibliografia
  • [1] Macku, R., Sicner, J., Dallaeva, D. (2012). An experimentally based characterization of solar cel structure defects by means of noise and optical activities analysis. Fracture Mechanics for Durability, Reliability and Safety., 499-506.
  • [2] Chobola, Z. (2001). Noise as a tool for non-destructive testing of single-crystal silicon solar cells. Microelectron. Reliab., 41(12), 1947-1952.
  • [3] Vanek, J., Dolensky, J., Chobola, Z., Lunak, M., Poruba, A. (2012). Low Frequency Noise and Microplasma Analysis for c-Si Solar Cell Characterization. Int. J. Photoenergy, 5.
  • [4] Hooge, F.N., Kleinpenning, T.G.M., Vandamme, L.K.J. (1981). Experimental studies on 1/f noise. textitRep. Prog. Phys., 44(5), 479-532.
  • [5] Breitenstein, O., Bauer, J., Trupke, T., Bardos, R.A. (2008). On the detection of shunts in silicon solar cells by photo- and electroluminescence imaging. Prog. Photovolt. Res. Appl., 16(4), 325-330.
  • [6] Wurfel, P., Trupke, T., Puzzer, T., Schaffer, E., Warta, W., Glunz, S. W. (2007). Diffusion lengths of silicon solar cells from luminescence images. J. Appl. Phys., 101, 123110.
  • [7] Lausch, D., Petter, K., Wenckstern, H., Grundmann, M. (2009). Correlation of pre-breakdown sites and bulk defects in multicrystalline silicon solar cells. Phys. Stat. Sol. RRL, 3, 70-72.
  • [8] Bliss, M., Wu, X., Bedrich, K.G., Bowers, J.W., Betts, T.R., Gottschalg, R. (2015). Spatially and spectrally resolved electroluminescence measurement system for photovoltaic characterisation. IET Renewable Power Generation, 9(5), 446-452.
  • [9] Koktavy, P., Macku, R. (2011). Noise and Optical Activities of Local Defects in Solar Cells pn Junctions. 21st Int. Conf. on Noise and Fluctuations, Toronto, 405-408.
  • [10] Bishop, J.W. (1989). Microplasma Breakdown and Hot-spots in Silicon Solar Cells. Solar Cells, 26, 335-349.
  • [11] Macku, R., Koktavy, P. (2009). Improved electrical characterization of silicon solar cells based on noise spectroscopy in forward direction. Proc. 24th European Photovolt. Solar Energy Conf., Hamburg: WIP Renewable Energies, 484-488.
  • [12] Levinshtein, M., Kostamovaara, J., Vainshtein, S. (2005). Breakdown Phenomena in Semiconductors and Semiconductor Devices. London: World Scientific.
  • [13] Romero, B., Del Pozo, G., Arredondo, B. (2012). Exact analytical solution of a two diode circuit model for organic solar cells showing S-shape using Lambert W-functions. Solar Energy, 86, 3026-3029.
  • [14] Batzelis, E., Papathanassiou, S. (2015). A method for the analytical extraction of the single-diode PV model parameters. IEEE Transactions on Sustainable Energy, 7(2), 1-9.
  • [15] Jammadi, M., Merrikh-Bayat, F., Bigdeli, M. (2016). Very accurate parameter estimation of single- and double-diode solar cell models using a modified artificial bee colony algorithm. Int. J. Energy Enviromental Engineering, 7(1), 13-25.
  • [16] Breitenstein, O., Altermatt, P., Ramspeck, K., Schenk, A. (2006). The Origin of Ideality factors n > 2 of Shunts and Surfaces in the Dark I-V Curves of Si Solar Cells. Proc.of the 21st Europ. Photovol. Solar Energy Conf., Dresden, 21, 625-628.
  • [17] Konczakowska, A., Wilamowski, B. (2011). Noise in Semiconductor Devices. Fundamentals of Industrial Electronics, Electrical Engineering Handbook, CRC Press, 1-12.
  • [18] An, Y., Rao, H., Bosman, G., Ural, A. (2012). Random telegraph signal and 1/f noise in forward-biased single-walled carbon nanotube film-silicon Schottky junctions. Appl. Phys. Lett., 100(21), 2131021-4.
  • [19] Macku, R., Koktavy, P. (2010). Analysis of fluctuation processes in forward-biased solar cells using noise spectroscopy. Phys. Stat. Sol., 207(10), 2387-2394.
  • [20] Hooge, F.N. (1969). 1/f Noise is no surface effect. Physics Letters (A), 29, 139-140.
  • [21] Vandamme, L.K.J. (1994). Noise as a diagnostic tool for quality and reliability of electronic devices. IEEE Trans. Elec. Dev., 41(11), 2176-2187.
  • [22] Hooge, F.N. (1994). 1/f noise sources. IEEE Trans. Elec. Dev., 41(11), 1926-1935.
  • [23] Sikula, J., Schauer, P., Vasina, P., Sikulova, M., Koktavy, B., Chobola, Z., Navarova, H., Pazdera, L. (1994). 1/f Noise in metallic thin films. AIP Conf. Proc., 371, 59-64.
  • [24] Dutta, P., Horn, P.M. (1981). Low-frequency fluctuations in solids: 1/f noise. Rev. Mod. Phys., 53(3), 497-516.
  • [25] Granqvist, C.G., Green, S., Jonson, E.K., Marsal, R., Niklasson, G.A., Roos, A., Topalian, Z., Azens, A., Georen, P., Karmhab, R., Smulko, J., Kish, L.B. (2008). Electrochromic foil-based devices: Optical transmittance and modulation range, effect of ultraviolet irradiation, and quality assessment by 1/f current noise. Thin Solid Films, 516(17), 5921-5926.
  • [26] Macku, R., Koktavy, P., Sicner, J. (2012). Comprehensive Study of Solar Cell Structure Defects by Means of Noise and Light Emission Analysis. Advances in Electrical and Electronic Engineering, 10(2), 130-135.
  • [27] Skar vada, P., Tomanek, P., Koktavy, P., Macku, R., Sicner, J., Vondra, M., Dallaeva, D., Smith, S., Grmela, L. (2014). A variety of microstructural defects in crystalline silicon solar cells. App. Surf. Science, 312, 50-56.
  • [28] Schneemann, M., Helbig, A., Kirchartz, T., Carius, R., Rau, U. (2010). Reverse biased electroluminescence spectroscopy of crystalline silicon solar cells with high spatial resolution. Physica Status Solidi (A), 207, 2597-2600.
  • [29] Bothe, K., Ramspeck, K., Hinken, D., Schinke, C., Schmidt, J., Herlufsen, S., Brendel, R., Bauer, J., Wagner, J.M., Zakharov, N., Breitenstein, O. (2009). Luminescence emission from forward- and reverse-biased multicrystalline silicon solar cells. J. of Appl. Phys., 106(10), 104510.
  • [30] Brenstein, O., Bauer, J., Bothe, K., Kwapil, W., Lausch, D., Rau, U., Schmidt, J., Schneemann, M., Schubert, M.C., Wagner, J.M., Warta, W. (2011). Understanding junction breakdown in multicrystalline solar cells. J. of App. Physics, 109(7), 071101.
  • [31] Breitenstein, O., Bauer, J., Altermatt, P., Ramspeck, K. (2010). Influence of Defects on Solar Cell Characteristics. Solid State Phenomena, 156-158, 1-10.
  • [32] Szewczyk, A., Lentka, Ł., Smulko, J., Babuchowska, P., Beguin, F. (2017). Measurements of flicker noise in supercapacitor cells. 24th Int. Conf. on Noise and Fluctuations, Vilnius, 1-4.
  • [33] Jones, B.K. (2002). Electrical noise as a reliability indicator in electronic devices and components. IEE Proc. Circuits, Devices and Syst., 149(1), 14-22.
Uwagi
EN
1. The research presented in this paper was financed by the Internal Grant Agency of Brno University of Technology, grant No. FEKT-S-17-4626 and by the National Sustainability Program under grant LO1401. In the research, the infrastructure of the SIX Centre was used.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2eebbed8-49f7-4741-a0fb-b4115c3abea6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.