PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental Research of the Weakening of the Fuselage Skin by RFSSW Single Row Joints

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of experimental investigations, the aim of which was to determine the degree of weakening of skin sheet of the thin-walled structure through a single-row welded joints made by Refill Friction Stir Spot Welding (RFSSW) technology. At the beginning, a short metallographic analysis of the weld was carried out, defining the characteristic areas of the microstructure. Then, comparative tests were carried out on the thin-walled structure sample in the form of a single-row skin-stringer joint. The structures made with the discussed technology of welding were compared with the traditionally joined structure by riveting. It has been shown that in the case of the welded structure, the skin sheet is weakened by more than 6% to a lesser extent than in the case of riveted. However, it was shown that the cracking path in the tensiled welded sheet runs along an unpredictable path, deviating from the line marked by the welds’ row. While in the case of riveted joint the cracking propagation along the row of rivets was revealed. The analyzes of fracture surfaces for both cases using scanning electron microscopy were also undertaken, thus undertaking preliminary considerations on the mechanism of fracture.
Twórcy
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
autor
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
  • Department of Mathematics and Natural Sciences, University of Rzeszow, Rzeszów, Poland
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Aniversario R.B., Harvey S.T., McCarty J.E., Parson J.T., Peterson, D.C., Pritchett L.D., Wilson D.R., Wogulis E.R.: Full-scale testing, production and cost analysis data for the advanced composite stabilizer for Boeing 737 Aircraft. 2, NASA CR-166012, Dec.1982.
  • 2. Bryan H.: Engineering Composite Materials. The Institute of materials, London, Cantwell W.J, Mortont J.: The impact resistance of composite materials – a review. Composites, 1991, 22, 347-362.
  • 3. Deo R., Starnes Jr. J.H., Holzwarth, R.: Low-cost composite materials and structures for aircraft applications. NATO Applied Vehicle Technology Panel (AVT) Specialists’ Meeting, RTO-MP- 069(II), Leon, Norway, May 2001.
  • 4. Cutler J., Liber J.: History, Semi-monocoque structures. Understanding Aircraft Structures, 4th ed., Padstow, Cornwall, Blackwell, 2005, 9-14.
  • 5. Fouse J.A., McClaren S.W.: Airframe assembly and process. United States of America Patent 4, 294, 419, 13 October 1981.
  • 6. Hamamoto K., Amaoka K., Takizawa N., Hosoi M.: Aircraft fuselage structure. Japan Patent 5,170,967, 15 December 1992.
  • 7. Mendez P.F., Eagar T.W.: Welding process for aeronautics. Advanced Materials and Processes, 159, 2001, 39-43.
  • 8. Neye G., Heider P.: Laser beam welding of modern Al-alloy for the aircraft industry. ECLAT’94/Dusseldorf: Deutscher Verband für Schweißtechnik 1994, 108-117.
  • 9. Neye G.: Laserstrahlschweiβkonzept für Rumpfschalen-strukturen. Strahltechnik. Band 5, Bremen, Bias-Verlag, Hrsg.: Sepold G, Jüptner W. 1997.
  • 10. Sadowski T., Golewski P.: Skew bending of aircraft fuselage panels with “L” and “C” stringers mounted by hybrid joint. Archives of Metallurgy and Materials, 60(4), 2015, 2813-2820.
  • 11. Kubit A., Bucior M., Wydrzyński D., Trzepieciński T., Pytel M.: Failure mechanisms of refill friction stir spot welded 7075–T6 aluminium alloy single – lap joints. International Journal of Advanced Manufacturing Technology, 94(9-12), 2018, 4479-4491.
  • 12. Hadjez F., Necib B.: Stress Analysis of an Aircraft Fuselage with and without Portholes using CAD/ CAE Process. Journal of Aeronautics & Aerospace Engineering, 4(1), 2015.
  • 13. Swift T.: Damage tolerance in pressurised fuselages. 11th Plantema Memorial Lecture. New Materials and Fatigue Resistant Aircraft Design (ed. D L Simpson), Engineering Materials Advisory Services Ltd., Warley, UK, 1987, 1-7.
  • 14. Wanhill R.J.H.: Milestone Case Histories in Aircraft Structural Design. National Aerospace Laboratory, NLR-TP-2002-521, 2002.
  • 15. Atkinson R.J., Winkworth W.J., Norris G.M.: Behaviour of Skin Fatigue Cracks at the Corners of Windows in a Comet Fuselage. Reports and Memoranda No. 3248, June, 1960.
  • 16. Phillips E.P., Britt V.O.: Measurements of fuselage skin strains and displacements near a longitudinal lap joint in a pressurized aircraft. NASA Technical Memorandum 104163, October 1991.
  • 17. Kubit A., Kluz R., Trzepieciński T., Wydrzyński D., Bochnowski W.: Analysis of the mechanical properties and of micrographs of refill friction stir spot welded 7075–T6 aluminium sheets. Archives of Civil and Mechanical Engineering, 18(1), 2018, 235-244.
  • 18. ISO 6892-1. ISO 6892-1: Metallic materials - Tensile testing - Part 1: Method of test at room temperature. Standards, 2016, pp. 79.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ee9e36e-e4e7-42ed-bf07-24dd3c7a819f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.