PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization on turning parameters of 15-5PH stainless steel using Taguchi based grey approach and TOPSIS

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Optymalizacja parametrów toczenia stali nierdzewnej 15-5PH z wykorzystaniem „szarej” analizy relacyjnej opartej na metodzie Taguchi i metody TOPSIS
Języki publikacji
EN
Abstrakty
EN
The machinability and the process parameter optimization of turning operation for 15-5 Precipitation Hardening (PH) stainless steel have been investigated based on the Taguchi based grey approach and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). An L27 orthogonal array was selected for planning the experiment. Cutting speed, depth of cut and feed rate were considered as input process parameters. Cutting force (Fz ) and surface roughness (Ra) were considered as the performance measures. These performance measures were optimized for the improvement of machinability quality of product. A comparison is made between the multi-criteria decision making tools. Grey Relational Analysis (GRA) and TOPSIS are used to confirm and prove the similarity. To determine the influence of process parameters, Analysis of Variance (ANOVA) is employed. The end results of experimental investigation proved that the machining performance can be enhanced effectively with the assistance of the proposed approaches.
PL
Optymalizację parametrów procesu toczenia stali nierdzewnej typu 15-5 utwardzanej wydzieleniowo (PH) badano stosując „szarą” analizę relacyjną (GRA) opartą na metodzie Taguchi i metodę rozwiązywania problemów decyzyjnych TOPSIS. Układ planowanych eksperymentów przedstawiono w formie tablicy ortogonalnej L27. Miarami jakości procesu były siła skrawania (Fz ) i chropowatość powierzchni (Ra). Miary te zostały zoptymalizowane w celu poprawy skrawalności. Przeprowadzono porównanie pomiędzy różnymi wielokryterialnymi metodami decyzyjnymi. Zastosowano „szarą” analizę relacyjną (GRA) i metodę TOPSIS by potwierdzić i udowodnić podobieństwo wyników. Zastosowano analizę wariancji (ANOVA) by wyznaczyć wpływy parametrów procesu toczenia. Wyniki końcowe badań eksperymentalnych potwierdzają, że jakość skrawania może być efektywnie podwyższona przy zastosowaniu wspomnianych metod.
Rocznik
Strony
397--412
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Production Department, National Institute of Technology, Tiruchirappalli, India-620015
autor
  • Production Department, National Institute of Technology, Tiruchirappalli, India-620015
Bibliografia
  • [1] 15-5PH Stainless Steel, UNS S15500.AK Steel. 2004. AK Steel Corporation, 2005. http://www.aksteel.com/pdf/marketsproducts/stainless/precipitation/15-5PhDataSheet.pdf.
  • [2] Metals Handbook. Machining, volume 16. ASM International, Materials Park, OH 44073.
  • [3] J.P. Davim. Machining: fundamentals and recent advances. Springer Science & Business Media, 2008.
  • [4] A. Kumar, Y. Balaji, N. E. Prasad, G. Gouda, and K. Tamilmani. Indigenous development and air worthiness certification of 15–5 PH precipitation hardenable stainless steel for aircraft applications. Indian Academy of Sciences. Sadhana, 38(1):3–23, 2013.
  • [5] A. Braghini Junior, A.E. Diniz, and F.T. Filho. Tool wear and tool life in end milling of 15–5 PH stainless steel under different cooling and lubrication conditions. The International Journal of Advanced Manufacturing Technology, 43(7-8):756–764, 2009.
  • [6] R.L. Liu and M.F. Yan. Improvement of wear and corrosion resistances of 17-4PH stainless steel by plasma nitrocarburizing. Materials & Design, 31(5):2355–2359, 2010.
  • [7] M.F. Yan, R.L. Liu, and D.L. Wu. Improving the mechanical properties of 17-4PH stainless steel by low temperature plasma surface treatment. Materials & Design, 31(4):2270–2273, 2010.
  • [8] Z. Wang, C. Jiang, X. Gan, Y. Chen, and V. Ji. Influence of shot peening on the fatigue life of laser hardened 17-4PH steel. International Journal of Fatigue, 33(4):549–556, 2011.
  • [9] Zhaoyun Chen, Guan Zhou, and Zhonghua Chen. Microstructure and hardness investigation of 17-4PH stainless steel by laser quenching. Materials Science and Engineering: A, 534:536–541, 2012.
  • [10] M. Abdelshehid, K. Mahmodieh, K. Mori, L. Chen, P. Stoyanov, D. Davlantes, J. Foyos, J. Ogren, R. Clark, and O.S. Es-Said. On the correlation between fracture toughness and precipitation hardening heat treatments in 15-5PH stainless steel. Engineering Failure Analysis, 14(4):626–631, 2007.
  • [11] M. Aghaie-Khafri and A. Zargaran. High temperature tensile behavior of a PH stainless steel. Materials Science and Engineering: A, 527(18):4727–4732, 2010.
  • [12] B. Fnides and M.A. Yallese. Cutting forces and surface roughness in hard turning of hot work steel X38CrMoV5-1 using mixed ceramic. Mechanics, 70(2):73–78, 2016.
  • [13] M.Y. Noordin, V.C. Venkatesh, and S. Sharif. Dry turning of tempered martensitic stainless tool steel using coated cermet and coated carbide tools. Journal of Materials Processing Technology, 185(1):83–90, 2007.
  • [14] D.A. Axinte and R.C. Dewes. Surface integrity of hot work tool steel after high speed milling-experimental data and empirical models. Journal of Materials Processing Technology, 127(3):325–335, 2002.
  • [15] J. Prasanna, L. Karunamoorthy, M. Venkat Raman, S. Prashanth, and D. Raj Chordia. Optimization of process parameters of small hole dry drilling in Ti–6Al–4V using Taguchi and grey relational analysis. Measurement, 48:346–354, 2014.
  • [16] E. Kuram and B. Ozcelik. Multi-objective optimization using Taguchi based grey relational analysis for micro-milling of al 7075 material with ball nose end mill. Measurement, 46(6):1849–1864, 2013.
  • [17] C.J. Tzeng, Y.H. Lin, Y.K. Yang, and M.C. Jeng. Optimization of turning operations with multiple performance characteristics using the Taguchi method and grey relational analysis. Journal of Materials Processing Technology, 209(6):2753–2759, 2009.
  • [18] C. Camposeco-Negrete. Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and ANOVA. Journal of Cleaner Production, 53:195–203, 2013.
  • [19] Y.Tansel Iç. An experimental design approach using TOPSIS method for the selection of computer-integrated manufacturing technologies. Robotics and Computer-Integrated Manufacturing, 28(2):245–256, 2012.
  • [20] V.S. Gadakh. Parametric optimization of wire electrical discharge machining using TOPSIS method. Advances in Production Engineering & Management, 7(3):157–164, 2012.
  • [21] Y.Tansel Iç. A TOPSIS based design of experiment approach to assess company ranking. Applied Mathematics and Computation, 227:630–647, 2014.
  • [22] S. Vinodh, M. Prasanna, and N.H. Prakash. Integrated Fuzzy AHP–TOPSIS for selecting the best plastic recycling method: A case study. Applied Mathematical Modelling, 38(19):4662–4672, 2014.
  • [23] P.J. Ross. Taguchi techniques for quality engineering. McGraw-Hill, New York, 1998.
  • [24] D.P. Selvaraj and P. Chandramohan. Optimization of surface roughness of AISI 304 austenitic stainless steel in dry turning operation using Taguchi design method. Journal of Engineering Science and Technology, 5(3):293–301, 2010.
  • [25] B.M. Gopalsamy, B. Mondal, and S. Ghosh. Taguchi method and ANOVA: An approach for process parameters optimization of hard machining while machining hardened steel. Journal of Scientific & Industrial Research, 68(8):686–695, 2009.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ee89703-1b06-47b3-9a82-79b07486e853
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.