PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and static testing of a compact distributed-compliance gripper based on flexure motion

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There are precision issues with traditional rigid-body grippers due to their nature in presence of joints’ backlash and friction. This paper presents a macroscale compliant gripper to eliminate these issues for the applications in handing delicate/brittle materials such as powder granular or manipulating sub-millimetre objects such as optical fibre and micro-lens. The compliant gripper is obtained from a 2-PRRP (P: prismatic; R: revolute) kinematic mechanism, and uses distributed-compliance joints for avoiding stress-concentration and enabling large range of motion. A very compact design is achieved by using a position space principle. The compliant gripper is modelled, fabricated, followed by comprehensive testing for characterising relationships between the input displacement/force and output displacement and between the input displacement and displacement amplification ratio, and for analysing hysteresis during loading and unloading. The experimental results are compared with finite element analysis (FEA) model and linear analytical model. The testing results have suggested good performance characteristics of this compliant gripper such as a nearly linear relationship between the input and output, a nearly constant amplification ratio for closing the jaw, and negligible hysteresis error.
Rocznik
Strony
708--716
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
  • School of Engineering-Electrical and Electronic Engineering, University College Cork, Cork, Ireland
autor
  • School of Engineering-Electrical and Electronic Engineering, University College Cork, Cork, Ireland
Bibliografia
  • [1] M. Nordin, P.O. Gutman, Controlling mechanical systems with backlash – a survey, Automatica 8 (10) (2002) 1633–1649.
  • [2] L.L. Howell, Compliant Mechanisms, John Wiley & Sons, New York, 2001.
  • [3] S.T. Smith, Flexures: Elements of Elastic Mechanisms, Gordon and Breach Science Publishers, New York, 2000.
  • [4] N. Lobontiu, Compliant Mechanisms: Design of Flexure Hinges, CRC Press, Boca Raton, 2002.
  • [5] M.N.M. Zubir, B. Shirinzadeh, Y. Tian, Development of novel hybrid flexure-based microgrippers for precision micro-object manipulation, Review of Scientific Instruments 80 (2009) 065106, 14 pages.
  • [6] M. Goldfarb, N. Celanovic, A flexure-based gripper for small-scale manipulation, Robotica 17 (1999) 181–187.
  • [7] S.K. Nah, Z.W. Zhong, A microgripper using piezoelectric actuation for micro-object manipulation, Sensors and Actuators A: Physics 133 (2007) 218–223.
  • [8] J.D. Beroz, S. Awtar, M. Bedewy, T. Sameh, A.J. Hart, Compliant microgripper with parallel straight-line jaw trajectory for nanostructure manipulation, in: Proceedings of 26th American Society of Precision Engineering Annual Meeting, Denver, USA, 2011.
  • [9] W. Ai, Q. Xu, New structural design of a compliant gripper based on the Scott-Russell mechanism, International Journal of Advanced Robotic Systems 11 (2014) 192, 10 pages.
  • [10] Q. Xing, Design of asymmetric flexible micro-gripper mechanism based on flexure hinges, Advances in Mechanical Engineering 7 (6) (2015) 1–8.
  • [11] M.C. Carrozza, A. Eisinberg, et al., Towards a force-controlled microgripper for assembling biomedical microdevices, Journal of Micromechanics and Microengineering 10 (2) (2000) 271–276.
  • [12] S. Kota, K.-J. Lu, Z. Kreiner, B. Trease, J. Arenas, J. Geiger, Design and application of compliant mechanisms for surgical tools, ASME Journal of Biomedical Engineering 127 (2005) 981–989.
  • [13] Q. Xu, Design, fabrication, and testing of an MEMS microgripper with dual-axis force sensor, IEEE Sensors Journal 15 (10) (2015) 6017–6026.
  • [14] A.N. Reddy, N. Maheshwari, D.K. Sahu, G.K. Ananthasuresh, Miniature compliant grippers with vision-based force sensing, IEEE Transactions on Robotics 26 (5) (2010) 867–877.
  • [15] B. Zhu, X. Zhang, N. Wang, Topology optimization of hinge-free compliant mechanisms with multiple outputs using level set method, Structural and Multidisciplinary Optimization 47 (5) (2013) 659–672.
  • [16] Commerical PZT actuators with bridge amplification mechanisms: http://www.cedrat.com/en/mechatronic- products/actuators/apa.html (accessed 05.02.16).
  • [17] C. Ru, L. Chen, B. Shao, W. Rong, L. Sun, A hysteresis compensation method of piezoelectric actuator: model, identification and control, Control Engineering Practice 17 (9) (2009) 1107–1114.
  • [18] J.M. McCarthy, G.S. Soh, Geometric Design of Linkages, Springer-Verlag, New York, 2011.
  • [19] H. Li, G. Hao, A constraint and position identification (CPI) approach for the synthesis of decoupled spatial translational compliant parallel manipulators, Mechanism and Machine Theory 90 (2015) 59–83.
  • [20] H. Li, G. Hao, Compliant mechanism reconfiguration based on position space concept for reducing parasitic motion, in: Proceedings of ASME 2015 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Boston, MA, USA, 2015.
  • [21] G. Hao, H. Li, R. Kavanagh, Design of decoupled, compact, and monolithic spatial translational compliant parallel manipulators based on the position space concept, Proceedings of the IMechE Part C: Journal of Mechanical Engineering Science 230 (3) (2015) 367–378.
  • [22] G. Hao, X. Kong, A novel large-range XY compliant parallel manipulator with enhanced out-of-plane stiffness, Journal of Mechanical Design 134 (2012) 061009.
  • [23] G. Hao, Q. Meng, Y. Li, Design of large-range XY compliant parallel manipulators based on parasitic motion compensation, in: Proceedings of the ASME 2013 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Portland, USA, 2013.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ee42cc6-0cbe-43f8-85ea-f22c1230d6f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.