Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper discusses the current prognoses of aquaculture development worldwide putting an emphasis on its effect on the environment and the issue of the protection of water reservoirs in different countries. Water consumption in diversified aquaculture systems is presented herein as well as the characteristics of the mechanical and biological water treatment methods in fish farms, with particular attention paid to the recirculating water systems. New aquaculture technologies using post-production waters are presented. The paper provides a discussion on the contribution of aquaculture to the global greenhouse gas emissions and the means of limiting this emission. The effect of climate change on aquatic ecosystems is presented in the context of the changes of the aquaculture production profile. The paper includes a brief presentation of the methods of mitigating the changes with respect to contamination of aquatic ecosystems as well as climate change. Reducing the water footprint can be achieved through selective breeding, species diversification and implementation of more technologically advanced aquaculture systems such as: integrated multi-trophic aquaculture, aquaponics and recirculation systems in aquaculture. The need for certification of fish farms with water recirculation systems is justified in the paper. The issues addressed herein are summarised and the main areas for extending the research promoting preservation of aquatic ecosystems in aquaculture are presented.
Wydawca
Czasopismo
Rocznik
Tom
Strony
231--241
Opis fizyczny
Bibliogr. 70 poz., rys., tab., wykr.
Twórcy
autor
- West Pomeranian University of Technology, Faculty of Environmental Management and Agriculture, Department of Bioengineering, Juliusza Słowackiego St, 17, 71-434 Szczecin, Poland
autor
- West Pomeranian University of Technology, Faculty of Environmental Management and Agriculture, Department of Bioengineering, Juliusza Słowackiego St, 17, 71-434 Szczecin, Poland
autor
- West Pomeranian University of Technology, Department of Hydrobiology, Ichthyology and Biotechnology of Reproduction, Szczecin, Poland
autor
- West Pomeranian University of Technology, Department of Hydrobiology, Ichthyology and Biotechnology of Reproduction, Szczecin, Poland
autor
- West Pomeranian University of Technology, Department of Hydrobiology, Ichthyology and Biotechnology of Reproduction, Szczecin, Poland
Bibliografia
- Abhinav, K.A. et al. (2020) “Offshore multi-purpose platforms for a Blue Growth: A technological, environmental and socio-economic review,” Science of the Total Environment, 734, 138256. Available at: https://doi.org/10.1016/j.scitotenv.2020.138256.
- Ahmad, A.L. et al. (2022) “Environmental impacts and imperative technologies towards sustainable treatment of aquaculture wastewater: A review,” Journal of Water Process Engineering, 46, 102553. Available at: https://doi.org/10.1016/j.jwpe.2021.102553.
- Ahmed, N. et al. (2014) “Community-based climate change adaptation strategies for integrated prawn-fish-rice farming in Bangladesh to promote social-ecological resilience,” Reviews in Aquaculture, 6(1), pp. 20–35. Available at: https://doi.org/10.1111/raq.12022.
- Ahmed, N. and Turchini, G.M. (2021) “Recirculating aquaculture systems (RAS): Environmental solution and climate change adaptation,” Journal of Cleaner Production, 297, 126604. Available at: https://doi.org/10.1016/j.jclepro.2021.126604.
- ASC (2022) Recirculating Aquaculture Systems (RAS) Module. Utrecht: Aquaculture Stewardship Council. Available at: https://www.asc-aqua.org/wp-content/uploads/2022/04/RAS-Module.pdf (Accessed October 10, 2022).
- Barbacariu, C.-A. et al. (2022) “Evaluation of DDGS as a low-cost feed ingredient for common carp (Cyprinus carpio Linneus) cultivated in a semi-intensive system,” Life, 12(10), 1609. Available at: https://doi.org/10.3390/life12101609.
- Barrett, L.G. et al. (2022) “Sustainable growth of non-fed aquaculture can generate valuable ecosystem benefits,” Ecosystem Services, 53, 101396. Available at: https://doi.org/10.1016/j.ecoser.2021.101396.
- Bojarski, B. et al. (2021) “The influence of fish ponds on fish assemblages of adjacent watercourses,” Polish Journal of Environmental Studies, 31(1), pp. 609–617. Available at: https://doi.org/10.15244/pjoes/140561.
- Boretti, A. and Rosa, L. (2019) “Reassessing the projections of the World Water Development Report,” NPJ Clean Water, 2(1). Available at: https://doi.org/10.1038/s41545-019-0039-9.
- Bouelet Ntsama, I.S.B. et al. (2018) “Characteristics of fish farming practices and agrochemicals usage therein in four regions of Cameroon,” The Egyptian Journal of Aquatic Research, 44(2), pp. 145–153. Available at: https://doi.org/10.1016/j.ejar.2018.06.006.
- Brysiewicz, A. et al. (2022) “Fish diversity and abundance patterns in small watercourses of the Central European Plain Ecoregion in relation to environmental factors,” Water, 14(17), 2697. Available at: https://doi.org/10.3390/w14172697.
- Campanati, C. et al. (2021) “Sustainable intensification of aquaculture through nutrient recycling and circular economies: More fish, less waste, blue growth,” Reviews in Fisheries Science & Aquaculture, 30(2), pp. 143–169. Available at: https://doi.org/10.1080/23308249.2021.1897520.
- Castro-Olivares, A. et al. (2022) “Does global warming threaten small-scale bivalve fisheries in NW Spain?,” Marine Environmental Research, 180, 105707. Available at: https://doi.org/10.1016/j.marenvres.2022.105707.
- Correia, M.M. et al. (2020) “Integrated multi-trophic aquaculture: A laboratory and hands-on experimental activity to promote environmental sustainability awareness and value of aquaculture products,” Frontiers in Marine Science, 7. Available at: https://doi.org/10.3389/fmars.2020.00156.
- Cubillo, A.M. et al. (2021) “Direct effects of climate change on productivity of European aquaculture,” Aquaculture International, 29(4), pp. 1561–1590. Available at: https://doi.org/10.1007/s10499-021-00694-6.
- Cutajar, K. et al. (2022) “Culturing the sea cucumber Holothuria poli in open-water integrated multi-trophic aquaculture at a coastal Mediterranean fish farm,” Aquaculture, 550, 737881. Available at: https://doi.org/10.1016/j.aquaculture.2021.737881.
- Davidson, J. et al. (2014) “Comparing the effects of high vs. low nitra te on the health, performance, and welfare of juvenile rainbow trout Oncorhynchus mykiss within water recirculating aquaculture systems,” Aquacultural Engineering, 59, pp. 30–40. Available at: https://doi.org/10.1016/j.aquaeng.2014.01.003.
- Diem, T.N.T., Konnerup, D. and Brix, H. (2017) “Effects of recirculation rates on water quality and Oreochromis niloticus growth in aquaponic systems,” Aquacultural Engineering, 78, pp. 95–104. Available at: https://doi.org/10.1016/j.aquaeng.2017.05.002.
- Directive (2000) “Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy,” Official Journal of the European Union, L 327, pp. 1–72.
- Dutta, J. et al. (2020) “Brief commentary on the impact of global climate change on fisheries and aquaculture with special reference to India,” Bangladesh Journal of Zoology, 48(2), pp. 457–463. Available at: https://doi.org/10.3329/bjz.v48i2.52382.
- FAO (2022) In brief to the state of world fisheries and aquaculture 2022. Towards blue transformation. Rome: Food Agriculture Organization. Available at: https://doi.org/10.4060/cc0463en.
- Fedorova, G. et al. (2022) “Water reuse for aquaculture: Comparative removal efficacy and aquatic hazard reduction of pharmaceuticals by a pond treatment system during a one year study,” Journal of Hazardous Materials, 421, 126712. Available at: https://doi.org/10.1016/j.jhazmat.2021.126712.
- Fredricks, K.T. et al. (2022) “Effects of formaldehyde (Parasite-S ®) on biofilter nitrification from a cold and a warm freshwater RAS,” Aquaculture Research, 53(16), pp. 5647–5655. Available at: https://doi.org/10.1111/are.16046.
- Froehlich, H.E. et al. (2022) “Emerging trends in science and news of climate change threats to and adaptation of aquaculture,” Aquaculture, 549, 737812. Available at: https://doi.org/10.1016/j.aquaculture.2021.737812.
- Fry, J.P. et al. (2018) “Feed conversion efficiency in aquaculture: Do we measure it correctly?,” Environmental Research Letters, 13(2). Available at: https://doi.org/10.1088/1748-9326/aaa273.
- Fu, Z. et al. (2016) “Copper and zinc, but not other priority toxic metals, pose risks to native aquatic species in a large urban lake in Eastern China,” Environmental Pollution, 219, pp. 1069–1076. Available at: https://doi.org/10.1016/j.envpol.2016.09.007.
- Galappaththi, E.K. et al. (2020) “Climate change adaptation in aquaculture,” Reviews in Aquaculture, 12(4), pp. 2160–2176. Available at: https://doi.org/10.1111/raq.12427.
- Gałczyńska, M. (2012) Reakcja przęstki pospolitej (Hippuris vulgaris L.) i żabiścieku pływającego (Hydrocharis morsus-ranae L.) na zanieczyszczenie wody wybranymi metalami ciężkimi i możliwości wykorzystania tych roślin w fitoremediacji wód [The response of common mare’s tail (Hippuris vulgaris L.) and common frogbit (Hydrocharis morsus-ranae L.) to the pollution of water with selected heavy metals, and the possibility to use this plant in phytoremediation of water]. Szczecin: Wydawnictwo Uczelniane Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie.
- GUS (2021) Ochrona środowiska 2021 [Environment 2021]. Warszawa: Główny Urząd Statystyczny. Available at: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/ochrona-srodowiska-2021,1,22.html (Accessed: October 10, 2022).
- Gyalog, G., Cubillos Tovar J.P. and Békefi, E. (2022) “Freshwater aquaculture development in EU and Latin-America: Insight on production trends and resource endowments,” Sustainability, 14(11), 6443. Available at: https://doi.org/10.3390/su14116443.
- Hasan, N.A. et al. (2020) “A sequential assessment of WSD risk factors of shrimp farming in Bangladesh: Looking for a sustainable farming system,” Aquaculture, 526, 735348. Available at: https://doi.org/10.1016/j.aquaculture.2020.735348.
- IRŚ (no date) Akwakultura 2027. Plan strategiczny rozwoju chowu i hodowli ryb w Polsce w latach 2021–2027 [Strategic plan for the development of fish farming and fish rearing in Poland in 2021–2027]. Instytut Rybactwa Śródlądowego im. S. Sakowicza w Olsztynie. Available at: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi1v-r3oo5D-AhWol4sKHReSAG8QFnoECBcQAw&url=https%3A%2F%2Fwww.gov.pl%2Fattachment%2Ffbf4397c-5159-4aa7-8945-cfc47bc89e5d&usg=AOvVaw25H–TSRxRiXobFL9EXI_i (Accesed: October 11, 2022).
- Jakubiak, M. et al. (2022) “Influence of fish ponds on the benthic invertebrate composition in hydrological networks of selected fish farms in Southern Poland,” Folia Biologica (Kraków), 70(1), pp. 11–18. Available at: https://doi.org/10.3409/fb_70-1.02.
- Kanownik, W. and Wiśnios, M. (2015) “Influence of carp breeding on physicochemical state of water in fish pond and receive,” Inżynieria Ekologiczna, 44, pp. 131–138. Available at: https://doi.org/10.12912/23920629/60037.
- Khanjani, M., Zahedi, S. and Mohammadi, A.M. (2022) “Integrated multitrophic aquaculture (IMTA) as an environmentally friendly system for sustainable aquaculture: functionality, species, and application of biofloc technology (BFT),” Environmental Science and Pollution Research, 29(45), pp. 67513–67531. Available at: https://doi.org/10.1007/s11356-022-22371-8.
- Klinger, D.H., Levin, S.A. and Watson, J.E.M. (2017) “The growth of finfish in global open-ocean aquaculture under climate change,” Proceedings of the Royal Society B: Biological Sciences, 284(1864), 20170834. Available at: https://doi.org/10.1098/rspb.2017.0834.
- Luo, G. (2022) “Review of waste phosphorus from aquaculture: Source, removal and recovery,” Reviews in Aquaculture. Available at: https://doi.org/10.1111/raq.12727.
- MacLeod, M.C. et al. (2020) “Quantifying greenhouse gas emissions from global aquaculture,” Scientific Reports, 10(1). Available at: https://doi.org/10.1038/s41598-020-68231-8.
- Mahmood, T. et al. (2016) “Carbon and nitrogen flow, and trophic relationships, among the cultured species in an integrated multi-trophic aquaculture (IMTA) bay,” Aquaculture Environment Interactions, 8, pp. 207–219. Available at: https://doi.org/10.3354/aei00152.
- Manoj, M. et al. (2022) “State of the art techniques for water quality monitoring systems for fish ponds using IoT and underwater sensors: A review,” Sensors, 22(6), 2088. Available at: https://doi.org/10.3390/s22062088.
- Martins, C.I.M. et al. (2010) “New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability,” Aquacultural Engineering, 43(3), pp. 83–93. Available at: https://doi.org/10.1016/j.aquaeng.2010.09.002.
- Myhre, G. et al. (2013) “Anthropogenic and natural radiative forcing,” in T.F. Stocker et al. (eds.) Climate Change 2013: The Physical Science Basis. Cambridge University Press, pp. 659–740. Available at: https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_Chapter08_FINAL.pdf (Accessed: October 15, 2022).
- Nędzarek, A. et al. (2022) “Effect of filter medium on water quality during passive biofilter activation in a recirculating aquaculture system for Oncorhynchus mykiss,” Energies, 15(19), 6890. Available at: https://doi.org/10.3390/en15196890.
- Nguyen, T. et al. (2017) “Human ecological effects of tropical storms in the coastal area of Ky Anh (Ha Tinh, Vietnam),” Environment, Development and Sustainability, 19(2), pp. 745–767. Available at: https://doi.org/10.1007/s10668-016-9761-3.
- Ni, M. et al. (2020) “Shrimp–vegetable rotational farming system: An innovation of shrimp aquaculture in the tidal flat ponds of Hangzhou Bay, China,” Aquaculture, 518, 734864. Available at: https://doi.org/10.1016/j.aquaculture.2019.734864.
- OECD and FAO (2021) OECD-FAO Agricultural outlook 2021–2030. Paris: OECD Publishing. Available at: https://doi.org/10.1787/19428846-en (Accessed: October 15, 2022).
- P8_TA(2018)0248 (2020) “Towards a sustainable and competitive European aquaculture sector” Official Journal of the European Union, C28/32. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52018IP0248.
- Panda, B. et al. (2022) “Thermal stress response of different age group of Nile tilapia Oreochromis niloticus (Linnaeus, 1758) exposed to various temperature regimes,” Research Square [Preprint]. Available at: https://doi.org/10.21203/rs.3.rs-1728135/v1.
- Poore, J. and Nemecek, T. (2018) “Reducing food’s environmental impacts through producers and consumers,” Science, 360(6392), pp. 987–992. Available at: https://doi.org/10.1126/science.aaq0216.
- Qi, W. et al. (2022) “Estimation of nitrifying and heterotrophic bacterial activity in biofilm formed on RAS biofilter carriers by respirometry,” Aquaculture, 561, 738730. Available at: https://doi.org/10.1016/j.aquaculture.2022.738730.
- Rana, V., Milke, J. and Gałczyńska, M. (2021) “Inorganic and organic pollutants in Baltic Sea Region and feasible circular economy perspectives for waste management: A review,” in C. Baskar et al. (eds.) Handbook of solid waste. Springer Nature Singapore Pte Ltd. Available at: https://doi.org/10.1007/978-981-15-7525-9_80-1.
- Regueiro, L. et al. (2021) “Opportunities and limitations for the introduction of circular economy principles in EU aquaculture based on the regulatory framework,” Journal of Industrial Ecology, 26(6). Available at: https://doi.org/10.1111/jiec.13188.
- Reid, G. et al. (2019) “Climate change and aquaculture: Considering adaptation potential,” Aquaculture Environment Interactions, 11, pp. 603–624. Available at: https://doi.org/10.3354/aei00333.
- Richtie, H. (2020) Sector by sector: Where do global greenhouse gas emissions come from? [Online]. Our World in Data. Available at: https://ourworldindata.org/ghg-emissions-by-sector (Accessed: September 18, 2020).
- Roy, K. et al. (2020) “Nutrient footprint and ecosystem services of carp production in European fishponds in contrast to EU crop and livestock sectors,” Journal of Cleaner Production, 270, 122268. Available at: https://doi.org/10.1016/j.jclepro.2020.122268.
- Santorio, S. et al. (2021) “Sequencing versus continuous granular sludge reactor for the treatment of freshwater aquaculture effluents,” Water Research, 201, 117293. Available at: https://doi.org/10.1016/j.watres.2021.117293.
- Santorio, S. et al. (2022) “Pilot-scale continuous flow granular reaktor for the treatment of extremely low-strength recirculating aquaculture system wastewater,” Journal of Environmental Chemical Engineering, 10(2), 107247. Available at: https://doi.org/10.1016/j.jece.2022.107247.
- Shitu, A. et al. (2022) “Recent advances in application of moving Bed bioreactors for wastewater treatment from recirculating aquaculture systems: A review,” Aquaculture and Fisheries, 7(3), pp. 244–258. Available at: https://doi.org/10.1016/j.aaf.2021.04.006.
- Siddique, M.A.B. et al. (2022) “Impacts of climate change on hatchery productivity in Bangladesh: A critical review,” Social Science Research Network [Preprint]. Available at: https://doi.org/10.2139/ssrn.4082884.
- Sikora, M., Nowosad, J. and Kucharczyk, D. (2020) “Comparison of different biofilter media during biological bed maturation using common carp as a biogen donor,” Applied Sciences, 10(2), 626. Available at: https://doi.org/10.3390/app10020626.
- Song, G. et al. (2022) “Scenario analysis on optimal farmed-fish-species composition in China: A theoretical methodology to benefit wild-fishery stock, water conservation, economic and protein outputs under the context of climate change,” Science of the Total Environment, 806, 150600. Available at: https://doi.org/10.1016/j.scitotenv.2021.150600.
- Statista (2022) Average per capita water consumption in China 2010–2020 [Online]. Available at: https://www.statista.com/statistics/279679/average-per-capita-water-consumption-in-china/ (Accessed: December 28, 2022).
- Sun, F. et al. (2021) “China is establishing its water quality standards for enhancing protection of aquatic life in freshwater ecosystems,” Environmental Science & Policy, 124, pp. 413–422. Available at: https://doi.org/10.1016/j.envsci.2021.07.008.
- Teal, L.R. et al. (2018) “Physiology-based modelling approaches to characterize fish habitat suitability: Their usefulness and limitations,” Estuarine Coastal and Shelf Science, 201, pp. 56–63. Available at: https://doi.org/10.1016/j.ecss.2015.11.014.
- Tezzo, X. et al. (2021) “Food system perspective on fisheries and aquaculture development in Asia,” Agriculture and Human Values, 38(1), pp. 73–90. Available at: https://doi.org/10.1007/s10460-020-10037-5.
- UN Water (2015) Wastewater management – A UN-water analytical brief. Geneva, Switzerland: World Meteorological Organization. Available at: https://www.unwater.org/publications/wastewater-management-un-water-analytical-brief (Accessed: October 2, 2022).
- Wang, M. et al. (2022) “Nitrogen removal performance, and microbial community structure of water and its association with nitrogen metabolism of an ecological engineering pond aquaculture system,” Aquaculture Reports, 25, 101258. Available at: https://doi.org/10.1016/j.aqrep.2022.101258.
- Weiss, C.O. et al. (2020) “Climate change effects on marine renewable energy resources and environmental conditions for offshore aquaculture in Europe,” Ices Journal of Marine Science, 77(7–8), pp. 3168–3182. Available at: https://doi.org/10.1093/icesjms/fsaa226.
- Xu, C. et al. (2022) “Current status of greenhouse gas emissions from aquaculture in China,” Water Biology and Security, 1(3), 100041. Available at: https://doi.org/10.1016/j.watbs.2022.100041.
- Zhang, Y. et al. (2022) “Assessing carbon greenhouse gas emissions from aquaculture in China based on aquaculture system types, species, environmental conditions and management practices,” Agriculture, Ecosystems & Environment, 338, 108110. Available at: https://doi.org/10.1016/j.agee.2022.108110.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ee38eb0-a023-485b-8c9f-87b0b816527c