

Abstract—This brief proposes a novel architecture of the
chaotic pseudo-random bit generators (PRBGs) based on the
chaotic nonlinear model and pipelined data processing. We
investigated PRBG built on the chaotic logistic map and
frequency dependent negative resistances (FDNR). A significant
enhancement in terms of output throughput has been achieved by
combining the advantages of pipelining with post-processing
based on fast logical operations like bit shifting and XOR. The
proposed method has been implemented using programmable
SoC Zynq device from Xilinx. We verified output pseudo-random
bit stream by standard statistical tests NIST SP800-22. We also
present detailed comparison of the proposed post-processing
method with the methods reported previously by the other
authors. In particular, we compared the maximum output
throughput and amount of total logical resources required by
PRBG implementation in the programmable SoC device. For
PRBGs based on the logistic chaotic map and frequency
dependent negative resistance (FDNR) we obtained speed-up
factors equal to 33% and 14%, respectively. By composing the
output stream of 3 data channels in PRBG with FDNR element,
we get the maximum throughput equal to 38.43 Gbps. That is
significantly greater comparing to the chaotic PRBGs described
so far.

Index Terms—chaotic system, post-processing, pseudo-random
number generation, system on chip

I. INTRODUCTION

ANDOM number generator (RNG) and random bit
generator (RBG) are widely used in many applications

like computer simulation, cryptography, gaming and
randomized design. Hardware random number generators
based on physical microscopic phenomena such as thermal
noise [1, 2, 3], time jitter in ring oscillators [4, 5, 6], flip-flop
metastability [7, 8, 9] or quantum effects are called true
random number generators (TRNGs) since these processes
are, in theory, completely unpredictable. Due to the well-
known disadvantages of TRNGs (relatively low output bit
rate, complex design and vulnerability to external
synchronization) very often true random sequences are
replaced by pseudo-random numbers produced by pseudo-
random number generators (PRNGs) and pseudo-random bit
generators (PRBGs). An ideal PRBG should generate a non-
periodic, unpredictable sequence of numbers that meets
rigorous statistical requirements formulated by a specific
group of users. Most common principles for generation of

This work has been supported by the Military University of Technology,

Warsaw, Poland, as a part of the projects RMN 751 and PBS 918.
The author is with the Faculty of Electronics, Military University of

Technology, Warsaw, Poland (e-mail: pawel.dabal@wat.edu.pl).

pseudo-random sequences use linear feedback shift registers
(LFSR) [10] or modulo m operations (linear congruential
generators – LCG) [11]. Recently, an increasing number of
researchers explore chaotic mapping as an alternative source
of pseudo-random binary sequences [12, 13, 14, 15, 16, 17].

The main limitation of PRBGs is finite length of generated
sequences observed as a periodicity of output stream of
numbers. Moreover, the period of output sequences produced
by generators based on the LFSR or LCG principle can be
calculated analytically. In a case of chaotic PRBGs such
a calculation is usually impossible, because the solutions of
chaotic equations are irrational numbers while PRBGs are
implemented using a finite precision of arithmetic. Therefore,
in practice, an analysis of the periodicity of chaotic PRBGs
requires full search over all possible initial values [18].

The bit stream obtained from both TRBGs and PRBGs is
usually biased, which means that some output symbols are
predominating. A common approach to coping with bias, and
in general to improving the other statistical properties of the
output sequences, is an appropriate post-processing of data
produced by the RNG [19, 20].

In this paper we present a novel post-processing technique
developed for the use with pipelined chaotic pseudo-random
bit generators presented previously in our earlier works [21,
22]. The project was focused on a careful and comprehensive
optimization of the PRBG’s architecture to achieve the highest
possible operating frequency and output throughput of the
generated pseudo-random sequences. We get models of the
pipelined PRBG that has been implemented in Zynq 7020
from Xilinx. We considered a number of variants of the PRBG
using 16-, 32-, 48-, and 64-bit precision of arithmetic
calculations. The models have been verified experimentally.
The proposed post-processing method is focused on the
maximization of the number of effective bits used for
assembling the final PRBG’s output sequence. As a result, we
get a significant enhancement of the PRBG performance in
terms of its output throughput. All statistical test has been
performed using the NIST SP800-22 battery of tests [23] and
some dedicated software described in [24]. Experimental
results have been confronted with some other post-processing
methods applied earlier to the chaotic PRBGs by the other
authors [25, 26].

In Sec. II we describe an operating principle and design of
two chaotic PRBGs based on the logistic mapping and
frequency dependent negative resistance. We also explain the
proposed post-processing technique. Then, in Sec. III we
present main practical issues related to the implementation of
PRBGs in programmable device. Experimental results and

Pipelined Pseudo-Random Number Generator
with the Efficient Post-Processing Method

Paweł D bal

R

discussion of the impact of the proposed PRBGs architecture
on their statistical quality and output throughput are given in
Sec. IV. Sec. V contains some final remarks and brief
summary of the paper.

II. CHAOS-BASED PRBGS

Different chaotic systems have been tested by many authors
for use for the generation of pseudo-random sequences:
logistic map [27, 28, 29], Henon [30], Lorenz [31], and quasi-
chaotic non-linear filters [32]. They differ from each other in
terms of maximum output throughput, total amount of
required logical resources, and computational complexity.
Most of them use fixed-point arithmetic to simplify design, to
reduce the demands on the required logical resources and due
to the lack of dedicated FPGA blocks supporting floating-
point arithmetic. Meanwhile, an actual precision of the
arithmetic used for calculations of the chaotic attractors
according to a given equation or a system of equations is a key
factor for the statistical properties of pseudo-random
sequence, including its maximum length (period).

In practice, even after the proper selection of this precision,
some bit positions in generated binary words should be
rejected to keep the resulting bit stream within the assumed
limits of statistical quality. Such a rejection of some selected
bit positions may be considered as a simple yet effective post-
processing method. However, as a result the final output bit
stream has significantly lower throughput. In our previous
work we proposed a method to overcome this drawback by
introducing a new pipelined architecture of the chaotic PRBG
designed as a combinatorial logic block [33, 34]. However, to
exploit the full benefit from this architecture the operating
frequency should be much greater than the delay of a single
pipeline stage. We solved this problem by initializing the M-
stage pipeline by M different initial values. In this way, after
rejection of some more significant bits from the output words,
we get the overall speedup of the PRBG equal to M.

In the following text the symbol pArith denote precision of
the arithmetic used in calculations. By pWord we will refer to
the word length after rejection of pDrop most significant bits.
The symbol Qi will be used to denote an output word after
post-processing and Xi will describe the result obtained in i-th
iteration of the chaotic equation.

A. Chaotic PRBG with the logistic mapping

Logistic map [12] has been used in many pseudo-random
number generators [21, 22, 25, 33]. It was proposed for the
first time by P.F. Verhulst in 1845, and popularized by
R. May, who proposed the use of its properties to generate
a chaotic sequence of numbers [12].

 ()iii xrxx −=+ 11 , (1)

where 0 xi 1, 0 < r 4, n = 1, 2, 3 ….

The logistic map is perhaps the most frequently used model
of the chaotic system due to its relatively low computational
complexity (two multiplications and single subtraction per
iteration). Depending on the value of the parameter r, the

dynamics of the related sequence may change dramatically.
When r is in the range 3.569945672 < r 4, the numbers
generated in successive iterations of the mapping become
chaotic, and there is no constant pattern in the derived series.
However, there are so called windows of stability within this
range, when one can observe stable cycles. The last of these
windows is located at the value approximately equal to
3.828427. Of course, the generated sequence is also affected
by the choice of the initial value x0. In a case when r = 4, the
calculations are even simpler and require a single
multiplication per iteration. However, to achieve reasonably
good statistical properties of the output sequence, a sufficient
precision of arithmetic (commonly 48- or 64-bit) should be
used. This results in more complex multiplier and significant
decrease of the operating frequency. The behavior of the
logistic mapping with respect to the value of the parameter r is
shown in Fig. 1 as a bifurcation diagram.

B. Chaotic PRBG with the FDNR oscillator

Chaotic oscillators described by 3-rd order differential
equations, e.g. Chen [34], Lorentz [35], Sprott [36], and
FDNR [37] are also used in chaotic PRBGs. Detailed analysis
of oscillator with FDNR element may be found in [38]. It is
described by the following differential equation:

 XXBXX ++=− , (2)

where the nonlinear parameter B is defined as

<

≥
=

1),(,

1),(,

2

1

XXf

XXf
B

β

β
. (3)

To implement a chaotic generator based on differential

equation in a digital system we can use well known numerical
methods, e.g. Euler’s method, fourth-order Runge-Kutta
method or midpoint method. A comprehensive discussion of
their application to chaotic generators is presented in [39].
According to the author, the recommended method is the
Euler’s method, because of its simplicity, easy of use and
good performance.

Let Y = and Z = , then the numerical solution of equation
(2) is evaluated as:

Fig. 1. Bifurcation diagram of the logistic mapping.

 a) X-Y b) X-Z c) Y-Z

Fig. 2. Attractors of the chaotic system described by (3).

()ttttht

ttht

ttht

XBYZhZZ

hZYY

hYXX

++−=

+=

+=

+

+

+

, (4)

where t denotes time and h is a step. An appropriate choice of
the value of step h and parameters β allows easy
implementation of eq. (4) with the use of adders, bit shifters
and registers holding values of X, Y and Z. Fig. 2 shows the
chaotic behavior of nonlinear system described by (4).

C. Study on the known post-processing methods

An interesting concept of the PRBG based on the logistic
map and implemented in a programmable logic was presented
in [25]. In order to enhance the output throughput, the authors
proposed 2-stage pipeline and manually optimized
multiplication which saves the number of DSP blocks. Each
new output word is composed of three successive sub-words
Xi, Xi-1 and Xi-2 obtained as 16 less significant bits and coupled
together by mod 2 operation. The authors reported the
maximum output throughput equal to 1.45 Gbps @ 93 MHz
but did not provide any results of statistical tests.

In [26] the authors presented simple yet effective post-
processing method for chaotic oscillator based PRBG
implemented with the use of 32-bit arithmetic. The post-
processing is based on the mod 2 operation for γ most
significant bits shifted left by β positions. In a case of the
PRBG with FDNR element and γ = 32 it leads to the simple
relationship:

 ()β<<⊕=+ iii QXQ 1 . (5)

The sequence uses all available bits without rejection of any

positions and allows for very good efficiency of the PRBG
reported as 14.07 Gbps @ 146.56 MHz. The output data
stream passed statistical test NIST SP800-22.

D. A new method of post-processing for pipelined PRBGs

As one can see from results presented in [33] and [34], to
fulfill the requirements of standard statistical NIST test, some
more significant bit positions (including the sign bit) in output
words generated by the chaotic PRBG should be rejected.
Apparently, these bits contain much less entropy and change
less frequently than LSB bits. According to our observations,
the number of such a kind of statistically ‘weak’ bits depends
on many factors. Of course, one of them is the assumed
precision of arithmetic, in particular the number of bits

representing the integer part and the sign. Furthermore, we
observed that the number of ‘weak’ bits depends also on the
particular chaotic system and even on the order of calculations
and differentiation step. As a result, 12,5% to 50% of MSB bit
positions should be rejected for successful validation of the
output sequence by the NIST SP800-22 tests.

Taking into account all remarks mentioned above, we
propose a new method of post-processing composed of XOR
operation, bit shifting (rotation) and feedback loop. We apply
this method to the pipelined pseudo-random generators and
combine with some ideas described in [26]. Increasing the
number of bits independently added with the use of mod 2
operation we get significantly better dispersion of high
entropy contained in LSB bits over the MSB bit positions. As
a result, the entropy in output words is distributed in a more
uniform way and rejection of the selected bit positions is no
longer necessary.

An original architecture of the pipelined PRBG presented in
[33] and [34] features the output data stream composed of
alternate values obtained for different initial values (seeds).
Thanks to the principle of pipelined operation, each two
successive words Xi-1 and Xi-2 are available in a single iteration
at the same time and can be analyzed simultaneously. In a case
of non-pipelined PRBG such an analysis would require
additional registers for storing the values of Xi-1 and Xi-2.
An overlapping of ‘weak’ bits in these words can be easily
obtained by rotating bits to the left by RL = pAritch/4 bit
positions. Hence, the new output word Qi+1 is given by the
relationship:

 () () ()RLQRLXRLXXQ iiiii 32211 <<⊕<<⊕<<⊕= −−+ . (6)

Thanks to the use of two successive internal values of Xi-1

and Xi-2 combined with the previous output value Qi this
method of post-processing allows for more uniform
distribution of the entropy over the entire output word than the
basic method reported in [26]. It should be noted however,
that in a case when the number of ‘weak’ bits exceeds half of
the word this effect of entropy dispersion may be not
sufficiently effective. Such a situation can be detected by
careful monitoring of statistical properties for particular binary
subsequences isolated from the original output data stream.

III. IMPLEMENTATION

For each of two chaotic pseudo-random number generators
described in [33] and [34] (based on the logistic map and
FDNR element) we designed, implemented and
experimentally verified three different configurations. The
PRBG based on the logistic map will be denoted as PrngLog:
PrngLogClassic is the basic (non-pipelined) architecture,
PrngLogDelayed denotes pipelined architecture with a single
initial value having the length of pArith bits, and
PrngLogPiplined is pipelined architecture with M initial
values, each of pArith length.

Similarly, the PRBG operating with the use of FDNR
element will be denoted as PrngOsc and tested in three

versions: PrngOscClassic, PrngOscDelayed,
PrngOscPiplined. A new method of post-processing described
in Sec. II D has been applied to the pipelined PRBGs with
multiple initial values (PrngLogPiplined and
PrngOscPiplined).

Operating models of all PRBG versions listed above have
been developed using the MATLAB 2013a Simulink
environment with System Generator tool from Xilinx. In this
way we can easily get all necessary files with the relevant
VHDL description of the analyzed PRBG architectures.

Figures 3 and 4 show block diagrams of two PRBGs based
on the logistic map and FDNR element, respectively. Both
models include appropriate blocks for data post-processing.
To perform this post-processing we need pArith LUTs for
XOR operations and the same number of flip-flops (FFs) for
storing the output value Qn. Since a single LUT can perform
XOR operation on 6 bits simultaneously, we can optimize the
number of used LUTs and use pArith LUTs to calculate XOR
for many words. Successive values of X are easily available
thanks to the use of pipelined architecture.

In a case of the PrngOsc each of three channels (X, Y, Z)
has a separate post-processing block and additional block is
used for composing the output Q having the length of
3×pArith bits. It should be noted that introduction of post-
processing does not affect (decrease) the maximum operating
frequency of the PRBG in any way. The maximum speed of
the PRBG is still determined by the delay in the main
feedback loop.

As the test-bed we used the evaluation board ZedBoard
(Avnet) with SoC programmable device Zynq XC7Z020 from
Xilinx. This device contains 28-nm programmable logic, an
efficient dual core ARM Cortex-A9 processor, and versatile
hardware controllers.

IV. EXPERIMENTAL RESULTS

All statistical tests of the PRBG have been performed using
the NIST SP800-22 package [23]. This suite is the most
popular battery of statistical tests for evaluation of the quality
of RBGs. It is composed of 15 tests. These tests focus on
a variety of different types of non-randomness that could exist
in a sequence of numbers. Each of tests is applied to the same
sequence of n bits and gives P-value, i.e. the probabilistic
measure of the randomness of the sequence under test. If the
significance level is chosen to be 0.01 (common values of

 in cryptography are about 0.01), then about 1% of the
sequences are expected to be nonrandom. A sequence passes

a statistical test whenever the P-values , and fails otherwise.
A more intensive test, involves a number m of different
sequences generated by the PRBG under test. NIST suggests
the following strategy: check if the P-values are uniformly
distributed within the interval [0, 1] with a goodness of fit test
(P-valueT), then calculate proportion (Prop) of sequences
passing the test and compare it to the expected value.

A random generator should produce all kinds of sequences,
even bad ones (i.e., sequences not passing a statistical test).
This approach was already proposed by NIST in its document
([23], Ch. 4). The distribution of P-values for m of binary
sequences has been examined to check the uniform
distribution of P-values for each test. The uniformity of the
P-values has been examined via 2 test. After that, the
determination of P-values corresponding to the goodness-of-fit
distributional test on the P-values obtained for each statistical
test was made. Then, for each individual test we can calculate
P-valueT :

 =− 2,2
9

2χigamcP valueT (7)

According to the NIST recommendation, if P-valueT 0.0001,
then the sequences can be considered to be uniformly
distributed. If all results are positive, we can say that at the
assumed confidence level α the sequence is random. In our
tests we assumed: m = 128, n = 220 and α = 0.01.

Experimental tests have confirmed that the proposed post-
processing method is effective. According to our previous
analysis of the chaotic PRBG with FDNR element (PrngOsc)
the sequence composed of X, Y and Z outputs did not pass
statistical tests, although the separate data streams obtained at
these outputs have passed the test [34]. In the current design of
the PRBG with post-processing module the composed output
stream successfully passes NIST tests. All tests have been
repeated with positive results for over a dozen different initial
conditions.

We also estimated the efficiency of PRBGs with
implemented post-processing method in terms of maximum
throughput. The fastest version of the PRBG
(PrngOscPiplined − pipelined architecture based on the FDNR
with post-processing) generates output data at the speed of
25.75, 30.94 and 38.43 Gbps for 32-, 48-, and 64-bit precision
of arithmetic, respectively. As far as we know, this is the best
result achieved so far for the considered class of PRBGs.

Tables I shows detailed comparison of tested PRBGs. It
contains the total amount of required logic resources (LUTs,
FFs and DSP blocks), precision of arithmetic (pArith), an
effective length of output data word (pWord), and estimated
throughput with and without post-processing. It may be seen
that by applying the pipelined architecture we get speed-up
factor of the PRBG from 3 to 5 times, depending on the PRBG
version. Of course, it is achieved at a cost of proportional
increase of required logic resources.

Experimental results from Tab. I are very competitive
compared to known results obtained by the other authors. For
the PRBG based on the logistic map we get the throughput
equal to 14.56 Gbps @ 233 MHz, while in [25] the authors Fig. 3. Block diagram of the chaotic PRBG based on the logistic map with

built-in post-processing.

Fig. 4. Block diagram of the chaotic PRBG with FDNR element and built-in post-processing.

TABLE I.
COMPARISON OF THE REQUIRED LOGIC RESOURCES AND THROUGHPUTS OF TESTED PRBGS

 PrngLogClassic PrngLogDelayed PrngLogPiplined PrngOscClassic PrngOscDelayed PrngOscPiplined

pArith [b] 48 64 48 64 48 64 32 48 64 32 48 64 32 48 64

pWord [b] 16 32 16 32 24/48a 48/64a 16 32 56 16 32 56 8/32a 40/48a 56/64a

Delay 1 1 8 13 1b 1b 1 1 1 4 4 4 1b 1b 1b

R
es

ou
rc

es

LUT 90 107 134 313 182 377 208 312 416 308 464 608 404 608 800

FF 48 64 272 842 320 906 96 144 192 380 572 764 476 716 956

DSP 9 16 9 16 9 16 0 0 0 0 0 0 0 0 0

freal [MHz] 45 29 240 233 240 233 110 100 95 275 220 205 275 220 205

Speed before
post-processing
[Gbps]

0.703 0.906 0.469 0.561 5.625 10.922 1.719 3.125 5.195 1.074 1.719 2.803 2.148 8.594 11.211

Speed after
post-processing
[Gbps]

- - - - 11.250 14.563 - - - - - -
8.594 10.313 12.813

25.781c 30.938c 38.438c

a. without post-processing / with post-processing
b. effective delay between new values

achieved 1.45 Gbps @ 93 MHz. Similarly, for the PRBG with
FDNR element we get the speed of 25.75 Gbps @ 275 MHz,
while the authors in [26] have reported 14.07 Gbps @ 146.56
MHz.

V. CONCLUSION

We proposed and experimentally verified a dedicated post-
processing method for chaotic PRBGs with pipelined
architecture. This method significantly improves the efficiency
of the PRBGs because we do not need to reject bit positions
having lower entropy. The method has been applied to two
different PRBG models based on the logistic map and FDNR
element. As a result we get significant improvement of the
PRBG’s throughput: 14.56 Gbps for the PRBG with logistic
map (33% better than reported in [33]) and 12.81 Gbps for the

PRBG with FDNR element (14% better than reported in [34]).
Furthermore, by composing the output stream of 3 data
channels in PRBG with FDNR element, we get the maximum
throughput equal to 38.43 Gbps @ 205 MHz, which is the best
result obtained so far for this class of chaotic PRBGs. Since
the complete PRBG with post-processing module can be
easily implemented in a single, low-cost programmable SoC
device, it can be used in many applications, including complex
microsystems for scientific purposes as well as commercial
mobile digital systems with embedded gaming and/or
communication features.

REFERENCES
[1] C. S. Petrie, and A. J. Connelly, “A noise-based IC random number

generator for applications in cryptography,” IEEE Trans. Circuits Syst. I,
Fundam. Theory Appl., vol. 47, no. 5, pp. 615-621, May 2000.

[2] T. W. Holman, A. J. Connelly, and A. B. Dowlatabadi, „An integrated
analog/digital random noise source,” Trans. Circuits Syst. I, Fundam.
Theory Appl., pp. 521-528, 1997.

[3] M. Bucci, L. Germani, R. Luzzi, P. Tommasino, A. Trifiletti, and M.
Varanonuovo, “A high-speed IC random-number source for SmartCard
microcontrollers,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.,
vol. 50, no. 11, pp. 1373-1380, Nov. 2003.

[4] B. Sunar, W. J. Martin, and D. R. Stinson, “A Provably Secure True
Random Number Generator with Built-In Tolerance to Active Attacks,”
IEEE Trans. Comput., vol. 56, no. 1, pp. 109-119, Jan. 2007.

[5] V. Fischer, F. Bernard, N. Bochard, and M. Varchola, „Enhancing
security of ring oscillator-based TRNG implemented in FPGA,” in Proc.
Int. Conf. on Field Programmable Logic and Applications, 2008.

[6] M. Jessa, and Ł. Matuszewski, “Producing Random Bits with Delay-
Line-Based Ring Oscillators,” Int. Journal of Electronics and
Telecommunications, vol. 59, no. 1, pp. 41-50, 2013.

[7] C. Tokunaga, D. Blaauw, and T. Mudge, “True Random Number
Generator With a Metastability-Based Quality Control,” IEEE J. Solid-
State Circuits, vol. 43, no. 1, pp. 78-85, Jan. 2008.

[8] S. Robson, B. Leung, and G. Gong, „Truly Random Number Generator
Based on a Ring Oscillator Utilizing Last Passage Time,” IEEE Trans.
Circuits Syst II: Express Briefs, vol. 61, no. 12, pp. 937-941, 2014.

[9] Z. Wieczorek, and K. Gołofit, “Dual-Metastability Time-Competitive
True Random Number Generator,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 61, no. 1, pp. 134-145, Jan. 2014.

[10] H. Rahimov, M. Babaei and M. Farhadi, “Cryptographic PRNG Based
on Combination of LFSR and Chaotic Logistic Map,” Applied
Mathematics, vol. 2, no. 12, pp. 1531-1534, 2011.

[11] K. Entacher, A. Uhl, S. Wegenkittl, “Linear congruential generators for
parallel Monte Carlo: the Leap-Frog case,” Monte Carlo Methods and
Applications, vol. 4, no. 1, pp. 1-16, 1998.

[12] R. M. May, “Simple mathematical models with very complicated
dynamics,” Nature, vol. 261, pp. 459-467, Jun. 1976.

[13] M. Hénon, “A Two-Dimensional Mapping with a Strange Attractor”,
Commun. Math. Phys., vol. 50, no. 1, pp. 69-77, 1976.

[14] O. E. Rössler, “An Equation for Continuous Chaos”, Phys. Lett. A.,
vol. 57, no. 5, pp. 397-398, Jul. 1976.

[15] A. S. Elwakil and M. P. Kennedy, “Chaotic oscillator configuration
using a frequency dependent negative resistor,” in Proc. Int. Symp. on
Circuits and Systems ISCAS '99 , vol.5, 1999, pp. 399-402.

[16] C. Tanougast, “Hardware Implementation of Chaos Based Cipher:
Design of Embedded Systems for Security Applications,” Chaos-Based
Cryptography - Studies in Computational Intelligence, pp. 297-330,
2011.

[17] A. G. Radwan, A. S. Mansingka, M. A. Zidan, and K. N. Salama, "On
the short-term predictability of fully digital chaotic oscillators for
pseudo-random number generation," on 20th IEEE Int. Conf. on
Electronics, Circuits, and Systems, pp. 373-376, 2013.

[18] K. J. Persohn, and R. J. Povinelli, “Analyzing logistic map
pseudorandom number generators for periodicity induced by finite
precision floating-point representation,” Chaos, Solitons & Fractals,
vol. 45, no. 3, pp. 238-245, 2012.

[19] J. von Neumann, “Various techniques used in connection with random
digits,” National Bureau of Standards Applied Math Series, no 12, pp.
36-38, 1951.

[20] S.-H. Kwok, at al., “A Comparison of Post-Processing Techniques for
Biased Random Number Generators,” in Information Security Theory
and Practice. Security and Privacy of Mobile Devices in Wireless
Communication, LNCS vol. 6633, pp. 175-190, 2011.

[21] P. Dabal, and R. Pelka, “A Chaos-Based Pseudo-Random Bit Generator
Implemented in FPGA Device,” in Proc. 14th IEEE Symp. Design and
Diagnostics of Electronic Circuits and Systems, Cottbus, pp. 151-154,
2011.

[22] P. Dabal, and R. Pelka, “FPGA Implementation of Chaotic Pseudo-
Random Bit Generators,” in Proc. 19th Int. Conf. Mixed Design of
Integrated Circuits and Systems, Warsaw, pp. 260-264, 2012.

[23] A. Rukhin, et al., “A statistical test suite for random and pseudorandom
number generators for cryptographic applications,” NIST Special
publication 800-22, Revision 1a, Aug. 2010.

[24] P. Dabal, and R. Pelka, “An integrated system for statistical testing of
pseudo-random generators in FPGA devices,” in Proc. Int. Conf. on
Signals and Electronic Systems, Wrocław, 2012.

[25] A. Pande, and J. Zambreno, “A chaotic encryption scheme for real-time
embedded systems: design and implementation,” Telecommunication
Systems, vol. 52, no. 2, pp. 551-561, 2013.

[26] M. L. Barakat, A. S. Mansingka, A. G. Radwan, and K. N. Salama,
„Generalized Hardware Post-processing Technique for Chaos-Based
Pseudorandom Number Generators,” ETRI Journal, vol. 35, no. 3,
pp. 448-458, 2013.

[27] A. P. Kurian, and S. Puthusserypady, “Self-synchronizing chaotic stream
ciphers,” Signal Processing, vol. 88, issue 10, pp. 2442-2452, 2008.

[28] S. Liu, J. Sun, Z. Xu and Z. Cai, “An improved chaos-based stream
cipher algorithm and its VLSI implementation”, in Proc. Int. Conf. on
Networked Computing and Advanced Information Management, vol. 2,
pp. 191-197, 2008.

[29] N.P. Sajeeth and K.J. Babu, “Chaos for stream cipher,” in Proc. Recent
Adv. Computing Communications, ADCOM2000 New York: Tata
McGraw-Hill, pp. 35-42, 2000.

[30] R. Forre, “The Henon attractor as a keystream generator,”. in Advances
in cryptology EUROCRYPT 91. LNCS, Berlin: Springer, pp. 76-81,
1990.

[31] D. Frey, “Chaotic digital encoding: an approach to secure
communication,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 40,
no. 10, pp. 660-666, 1993.

[32] T. Habutsu, Y. Nishio, I. Sasase and Y. Nishio, “A secret key
cryptosystem by iterating a chaotic map,” in Advances in cryptology
EUROCRYPT 91. LNCS 547, pp. 127-140, 1991.

[33] P. Dabal, and R. Pelka, “A study on fast pipelined pseudo-random
number generator based on chaotic logistic map,” on 17th Int. Symp. on
Design and Diagnostics of Electronic Circuits and Systems, Warsaw,
pp. 195-205, 2014.

[34] P. Dabal, and R. Pelka, “Fast pipelined pseudo-random number
generator in programmable SoC device,” on Int. Conf. on Signals and
Electronic Systems, Pozna , 2014.

[35] G. R. Chen and J.H. Lu, “Dynamics of the Lorenz System Family:
Analysis, Control and Synchronization,” Beijing: Sci. Press, 2003.

[36] E. Lorenz, “Deterministic Nonperiodic Flow,” J. Atmospheric Sci.,
vol. 20, no. 2, pp. 130-141, 1963.

[37] J. C. Sprott, “Chaos and Time-Series Analysis,” Oxford, UK: Oxford
University Press, 2003.

[38] A. S. Elwakil, M. P. Kennedy, “Chaotic oscillator configuration using a
frequency dependent negative resistor,” on Int. Symp. on Circuits and
Systems, vol.5, pp. 399-402, 1999

[39] M.A. Zidan, A.G. Radwan, and K.N. Salama, “The effect of numerical
techniques on differential equation based chaotic generators,” in Proc.
Int. Conf. on Microelectronics (ICM), pp. 1-4, 2011.

Paweł D bal received the M.Sc. degree in electronic
engineering, in 2009, from the Military University of
Technology, Warsaw, Poland, where he is currently
working toward the Ph.D. degree in electronic
engineering. His research interests concern the
design of digital circuits and systems using FPGA
programmable structures for random number
generation use in cryptography.

