
  

Abstract—This brief proposes a novel architecture of the 
chaotic pseudo-random bit generators (PRBGs) based on the 
chaotic nonlinear model and pipelined data processing. We 
investigated PRBG built on the chaotic logistic map and 
frequency dependent negative resistances (FDNR). A significant 
enhancement in terms of output throughput has been achieved by 
combining the advantages of pipelining with post-processing 
based on fast logical operations like bit shifting and XOR. The 
proposed method has been implemented using programmable 
SoC Zynq device from Xilinx. We verified output pseudo-random 
bit stream by standard statistical tests NIST SP800-22. We also 
present detailed comparison of the proposed post-processing 
method with the methods reported previously by the other 
authors. In particular, we compared the maximum output 
throughput and amount of total logical resources required by 
PRBG implementation in the programmable SoC device. For 
PRBGs based on the logistic chaotic map and frequency 
dependent negative resistance (FDNR) we obtained speed-up 
factors equal to 33% and 14%, respectively. By composing the 
output stream of 3 data channels in PRBG with FDNR element, 
we get the maximum throughput equal to 38.43 Gbps. That is 
significantly greater comparing to the chaotic PRBGs described 
so far. 
 

Index Terms—chaotic system, post-processing, pseudo-random 
number generation, system on chip 
 

I. INTRODUCTION 

ANDOM number generator (RNG) and random bit 
generator (RBG) are widely used in many applications 

like computer simulation, cryptography, gaming and 
randomized design. Hardware random number generators 
based on physical microscopic phenomena such as thermal 
noise [1, 2, 3], time jitter in ring oscillators [4, 5, 6], flip-flop 
metastability [7, 8, 9] or quantum effects are called true 
random number generators (TRNGs) since these processes 
are, in theory, completely unpredictable. Due to the well-
known disadvantages of TRNGs (relatively low output bit 
rate, complex design and vulnerability to external 
synchronization) very often true random sequences are 
replaced by pseudo-random numbers produced by pseudo-
random number generators (PRNGs) and pseudo-random bit 
generators (PRBGs). An ideal PRBG should generate a non-
periodic, unpredictable sequence of numbers that meets 
rigorous statistical requirements formulated by a specific 
group of users. Most common principles for generation of 
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pseudo-random sequences use linear feedback shift registers 
(LFSR) [10] or modulo m operations (linear congruential 
generators – LCG) [11]. Recently, an increasing number of 
researchers explore chaotic mapping as an alternative source 
of pseudo-random binary sequences [12, 13, 14, 15, 16, 17]. 

The main limitation of PRBGs is finite length of generated 
sequences observed as a periodicity of output stream of 
numbers. Moreover, the period of output sequences produced 
by generators based on the LFSR or LCG principle can be 
calculated analytically. In a case of chaotic PRBGs such 
a calculation is usually impossible, because the solutions of 
chaotic equations are irrational numbers while PRBGs are 
implemented using a finite precision of arithmetic. Therefore, 
in practice, an analysis of the periodicity of chaotic PRBGs 
requires full search over all possible initial values [18]. 

The bit stream obtained from both TRBGs and PRBGs is 
usually biased, which means that some output symbols are 
predominating. A common approach to coping with bias, and 
in general to improving the other statistical properties of the 
output sequences, is an appropriate post-processing of data 
produced by the RNG [19, 20]. 

In this paper we present a novel post-processing technique 
developed for the use with pipelined chaotic pseudo-random 
bit generators presented previously in our earlier works [21, 
22]. The project was focused on a careful and comprehensive 
optimization of the PRBG’s architecture to achieve the highest 
possible operating frequency and output throughput of the 
generated pseudo-random sequences. We get models of the 
pipelined PRBG that has been implemented in Zynq 7020 
from Xilinx. We considered a number of variants of the PRBG 
using 16-, 32-, 48-, and 64-bit precision of arithmetic 
calculations. The models have been verified experimentally. 
The proposed post-processing method is focused on the 
maximization of the number of effective bits used for 
assembling the final PRBG’s output sequence. As a result, we 
get a significant enhancement of the PRBG performance in 
terms of its output throughput. All statistical test has been 
performed using the NIST SP800-22 battery of tests [23] and 
some dedicated software described in [24]. Experimental 
results have been confronted with some other post-processing 
methods applied earlier to the chaotic PRBGs by the other 
authors [25, 26]. 

In Sec. II we describe an operating principle and design of 
two chaotic PRBGs based on the logistic mapping and 
frequency dependent negative resistance. We also explain the 
proposed post-processing technique. Then, in Sec. III we 
present main practical issues related to the implementation of 
PRBGs in programmable device. Experimental results and 
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discussion of the impact of the proposed PRBGs architecture 
on their statistical quality and output throughput are given in 
Sec. IV. Sec. V contains some final remarks and brief 
summary of the paper. 

II. CHAOS-BASED PRBGS 

Different chaotic systems have been tested by many authors 
for use for the generation of pseudo-random sequences: 
logistic map [27, 28, 29], Henon [30], Lorenz [31], and quasi-
chaotic non-linear filters [32]. They differ from each other in 
terms of maximum output throughput, total amount of 
required logical resources, and computational complexity. 
Most of them use fixed-point arithmetic to simplify design, to 
reduce the demands on the required logical resources and due 
to the lack of dedicated FPGA blocks supporting floating-
point arithmetic. Meanwhile, an actual precision of the 
arithmetic used for calculations of the chaotic attractors 
according to a given equation or a system of equations is a key 
factor for the statistical properties of pseudo-random 
sequence, including its maximum length (period). 

In practice, even after the proper selection of this precision, 
some bit positions in generated binary words should be 
rejected to keep the resulting bit stream within the assumed 
limits of statistical quality. Such a rejection of some selected 
bit positions may be considered as a simple yet effective post-
processing method. However, as a result the final output bit 
stream has significantly lower throughput. In our previous 
work we proposed a method to overcome this drawback by 
introducing a new pipelined architecture of the chaotic PRBG 
designed as a combinatorial logic block [33, 34]. However, to 
exploit the full benefit from this architecture the operating 
frequency should be much greater than the delay of a single 
pipeline stage. We solved this problem by initializing the M-
stage pipeline by M different initial values. In this way, after 
rejection of some more significant bits from the output words, 
we get the overall speedup of the PRBG equal to M. 

In the following text the symbol pArith denote precision of 
the arithmetic used in calculations. By pWord we will refer to 
the word length after rejection of pDrop most significant bits. 
The symbol Qi will be used to denote an output word after 
post-processing and Xi will describe the result obtained in i-th 
iteration of the chaotic equation. 

A. Chaotic PRBG with the logistic mapping 

Logistic map [12] has been used in many pseudo-random 
number generators [21, 22, 25, 33]. It was proposed for the 
first time by P.F. Verhulst in 1845, and popularized by 
R. May, who proposed the use of its properties to generate 
a chaotic sequence of numbers [12]. 

 
 ( )iii xrxx −=+ 11 , (1) 

 
where 0  xi  1, 0 < r  4, n = 1, 2, 3 …. 

The logistic map is perhaps the most frequently used model 
of the chaotic system due to its relatively low computational 
complexity (two multiplications and single subtraction per 
iteration). Depending on the value of the parameter r, the 

dynamics of the related sequence may change dramatically. 
When r is in the range 3.569945672 < r  4, the numbers 
generated in successive iterations of the mapping become 
chaotic, and there is no constant pattern in the derived series. 
However, there are so called windows of stability within this 
range, when one can observe stable cycles. The last of these 
windows is located at the value approximately equal to 
3.828427. Of course, the generated sequence is also affected 
by the choice of the initial value x0. In a case when r = 4, the 
calculations are even simpler and require a single 
multiplication per iteration. However, to achieve reasonably 
good statistical properties of the output sequence, a sufficient 
precision of arithmetic (commonly 48- or 64-bit) should be 
used. This results in more complex multiplier and significant 
decrease of the operating frequency. The behavior of the 
logistic mapping with respect to the value of the parameter r is 
shown in Fig. 1 as a bifurcation diagram. 

B. Chaotic PRBG with the FDNR oscillator 

Chaotic oscillators described by 3-rd order differential 
equations, e.g. Chen [34], Lorentz [35], Sprott [36], and 
FDNR [37] are also used in chaotic PRBGs. Detailed analysis 
of oscillator with FDNR element may be found in [38]. It is 
described by the following differential equation: 
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where the nonlinear parameter B is defined as 
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To implement a chaotic generator based on differential 

equation in a digital system we can use well known numerical 
methods, e.g. Euler’s method, fourth-order Runge-Kutta 
method or midpoint method. A comprehensive discussion of 
their application to chaotic generators is presented in [39]. 
According to the author, the recommended method is the 
Euler’s method, because of its simplicity, easy of use and 
good performance. 

Let Y =  and Z = , then the numerical solution of equation 
(2) is evaluated as: 

 
Fig. 1.  Bifurcation diagram of the logistic mapping. 
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Fig. 2.  Attractors of the chaotic system described by (3). 
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where t denotes time and h is a step. An appropriate choice of 
the value of step h and parameters β allows easy 
implementation of eq. (4) with the use of adders, bit shifters 
and registers holding values of X, Y and Z. Fig. 2 shows the 
chaotic behavior of nonlinear system described by (4). 

C. Study on the known post-processing methods 

An interesting concept of the PRBG based on the logistic 
map and implemented in a programmable logic was presented 
in [25]. In order to enhance the output throughput, the authors 
proposed 2-stage pipeline and manually optimized 
multiplication which saves the number of DSP blocks. Each 
new output word is composed of three successive sub-words 
Xi, Xi-1 and Xi-2 obtained as 16 less significant bits and coupled 
together by mod 2 operation. The authors reported the 
maximum output throughput equal to 1.45 Gbps @ 93 MHz 
but did not provide any results of statistical tests. 

In [26] the authors presented simple yet effective post-
processing method for chaotic oscillator based PRBG 
implemented with the use of 32-bit arithmetic. The post-
processing is based on the mod 2 operation for γ most 
significant bits shifted left by β positions. In a case of the 
PRBG with FDNR element and γ = 32 it leads to the simple 
relationship: 

 
 ( )β<<⊕=+ iii QXQ 1 . (5) 

 
The sequence uses all available bits without rejection of any 

positions and allows for very good efficiency of the PRBG 
reported as 14.07 Gbps @ 146.56 MHz. The output data 
stream passed statistical test NIST SP800-22.  

D. A new method of post-processing for pipelined PRBGs 

As one can see from results presented in [33] and [34], to 
fulfill the requirements of standard statistical NIST test, some 
more significant bit positions (including the sign bit) in output 
words generated by the chaotic PRBG should be rejected. 
Apparently, these bits contain much less entropy and change 
less frequently than LSB bits. According to our observations, 
the number of such a kind of statistically ‘weak’ bits depends 
on many factors. Of course, one of them is the assumed 
precision of arithmetic, in particular the number of bits 

representing the integer part and the sign. Furthermore, we 
observed that the number of ‘weak’ bits depends also on the 
particular chaotic system and even on the order of calculations 
and differentiation step. As a result, 12,5% to 50% of MSB bit 
positions should be rejected for successful validation of the 
output sequence by the NIST SP800-22 tests. 

Taking into account all remarks mentioned above, we 
propose a new method of post-processing composed of XOR 
operation, bit shifting (rotation) and feedback loop. We apply 
this method to the pipelined pseudo-random generators and 
combine with some ideas described in [26]. Increasing the 
number of bits independently added with the use of mod 2 
operation we get significantly better dispersion of high 
entropy contained in LSB bits over the MSB bit positions. As 
a result, the entropy in output words is distributed in a more 
uniform way and rejection of the selected bit positions is no 
longer necessary. 

An original architecture of the pipelined PRBG presented in 
[33] and [34] features the output data stream composed of 
alternate values obtained for different initial values (seeds). 
Thanks to the principle of pipelined operation, each two 
successive words Xi-1 and Xi-2 are available in a single iteration 
at the same time and can be analyzed simultaneously. In a case 
of non-pipelined PRBG such an analysis would require 
additional registers for storing the values of Xi-1 and Xi-2. 
An overlapping of ‘weak’ bits in these words can be easily 
obtained by rotating bits to the left by RL = pAritch/4 bit 
positions. Hence, the new output word Qi+1 is given by the 
relationship: 

 
 ( ) ( ) ( )RLQRLXRLXXQ iiiii 32211 <<⊕<<⊕<<⊕= −−+ . (6) 

 
Thanks to the use of two successive internal values of Xi-1 

and Xi-2 combined with the previous output value Qi this 
method of post-processing allows for more uniform 
distribution of the entropy over the entire output word than the 
basic method reported in [26]. It should be noted however, 
that in a case when the number of ‘weak’ bits exceeds half of 
the word this effect of entropy dispersion may be not 
sufficiently effective. Such a situation can be detected by 
careful monitoring of statistical properties for particular binary 
subsequences isolated from the original output data stream. 

III. IMPLEMENTATION 

For each of two chaotic pseudo-random number generators 
described in [33] and [34] (based on the logistic map and 
FDNR element) we designed, implemented and 
experimentally verified three different configurations. The 
PRBG based on the logistic map will be denoted as PrngLog: 
PrngLogClassic is the basic (non-pipelined) architecture, 
PrngLogDelayed denotes pipelined architecture with a single 
initial value having the length of pArith bits, and 
PrngLogPiplined is pipelined architecture with M initial 
values, each of pArith length. 

Similarly, the PRBG operating with the use of FDNR 
element will be denoted as PrngOsc and tested in three 



versions: PrngOscClassic, PrngOscDelayed, 
PrngOscPiplined. A new method of post-processing described 
in Sec. II D has been applied to the pipelined PRBGs with 
multiple initial values (PrngLogPiplined and 
PrngOscPiplined). 

Operating models of all PRBG versions listed above have 
been developed using the MATLAB 2013a Simulink 
environment with System Generator tool from Xilinx. In this 
way we can easily get all necessary files with the relevant 
VHDL description of the analyzed PRBG architectures. 

Figures 3 and 4 show block diagrams of two PRBGs based 
on the logistic map and FDNR element, respectively. Both 
models include appropriate blocks for data post-processing. 
To perform this post-processing we need pArith LUTs for 
XOR operations and the same number of flip-flops (FFs) for 
storing the output value Qn. Since a single LUT can perform 
XOR operation on 6 bits simultaneously, we can optimize the 
number of used LUTs and use pArith LUTs to calculate XOR 
for many words. Successive values of X are easily available 
thanks to the use of pipelined architecture. 

In a case of the PrngOsc each of three channels (X, Y, Z) 
has a separate post-processing block and additional block is 
used for composing the output Q having the length of 
3×pArith bits. It should be noted that introduction of post-
processing does not affect (decrease) the maximum operating 
frequency of the PRBG in any way. The maximum speed of 
the PRBG is still determined by the delay in the main 
feedback loop. 

As the test-bed we used the evaluation board ZedBoard 
(Avnet) with SoC programmable device Zynq XC7Z020 from 
Xilinx. This device contains 28-nm programmable logic, an 
efficient dual core ARM Cortex-A9 processor, and versatile 
hardware controllers. 

IV. EXPERIMENTAL RESULTS 

All statistical tests of the PRBG have been performed using 
the NIST SP800-22 package [23]. This suite is the most 
popular battery of statistical tests for evaluation of the quality 
of RBGs. It is composed of 15 tests. These tests focus on 
a variety of different types of non-randomness that could exist 
in a sequence of numbers. Each of tests is applied to the same 
sequence of n bits and gives P-value, i.e. the probabilistic 
measure of the randomness of the sequence under test. If the 
significance level  is chosen to be 0.01 (common values of 

 in cryptography are about 0.01), then about 1% of the 
sequences are expected to be nonrandom. A sequence passes 

a statistical test whenever the P-values  , and fails otherwise. 
A more intensive test, involves a number m of different 
sequences generated by the PRBG under test. NIST suggests 
the following strategy: check if the P-values are uniformly 
distributed within the interval [0, 1] with a goodness of fit test 
(P-valueT), then calculate proportion (Prop) of sequences 
passing the test and compare it to the expected value. 

A random generator should produce all kinds of sequences, 
even bad ones (i.e., sequences not passing a statistical test). 
This approach was already proposed by NIST in its document 
([23], Ch. 4). The distribution of P-values for m of binary 
sequences has been examined to check the uniform 
distribution of P-values for each test. The uniformity of the 
P-values has been examined via 2 test. After that, the 
determination of P-values corresponding to the goodness-of-fit 
distributional test on the P-values obtained for each statistical 
test was made. Then, for each individual test we can calculate 
P-valueT : 

 =− 2,2
9

2χigamcP valueT  (7) 

According to the NIST recommendation, if P-valueT  0.0001, 
then the sequences can be considered to be uniformly 
distributed. If all results are positive, we can say that at the 
assumed confidence level α the sequence is random. In our 
tests we assumed: m = 128, n = 220 and α = 0.01. 

Experimental tests have confirmed that the proposed post-
processing method is effective. According to our previous 
analysis of the chaotic PRBG with FDNR element (PrngOsc) 
the sequence composed of X, Y and Z outputs did not pass 
statistical tests, although the separate data streams obtained at 
these outputs have passed the test [34]. In the current design of 
the PRBG with post-processing module the composed output 
stream successfully passes NIST tests. All tests have been 
repeated with positive results for over a dozen different initial 
conditions. 

We also estimated the efficiency of PRBGs with 
implemented post-processing method in terms of maximum 
throughput. The fastest version of the PRBG 
(PrngOscPiplined − pipelined architecture based on the FDNR 
with post-processing) generates output data at the speed of 
25.75, 30.94 and 38.43 Gbps for 32-, 48-, and 64-bit precision 
of arithmetic, respectively. As far as we know, this is the best 
result achieved so far for the considered class of PRBGs. 

Tables I shows detailed comparison of tested PRBGs. It 
contains the total amount of required logic resources (LUTs, 
FFs and DSP blocks), precision of arithmetic (pArith), an 
effective length of output data word (pWord), and estimated 
throughput with and without post-processing. It may be seen 
that by applying the pipelined architecture we get speed-up 
factor of the PRBG from 3 to 5 times, depending on the PRBG 
version. Of course, it is achieved at a cost of proportional 
increase of required logic resources. 

Experimental results from Tab. I are very competitive 
compared to known results obtained by the other authors. For 
the PRBG based on the logistic map we get the throughput 
equal to 14.56 Gbps @ 233 MHz, while in [25] the authors Fig. 3.  Block diagram of the chaotic PRBG based on the logistic map with

built-in post-processing. 



 
Fig. 4.  Block diagram of the chaotic PRBG with FDNR element and built-in post-processing. 

TABLE I.   
COMPARISON OF THE REQUIRED LOGIC RESOURCES AND THROUGHPUTS OF TESTED PRBGS 

  PrngLogClassic PrngLogDelayed PrngLogPiplined PrngOscClassic PrngOscDelayed PrngOscPiplined 

pArith [b] 48 64 48 64 48 64 32 48 64 32 48 64 32 48 64 

pWord [b] 16 32 16 32 24/48a 48/64a 16 32 56 16 32 56 8/32a 40/48a 56/64a 

Delay 1 1 8 13 1b 1b 1 1 1 4 4 4 1b 1b 1b 

R
es

ou
rc

es
 

LUT 90 107 134 313 182 377 208 312 416 308 464 608 404 608 800 

FF 48 64 272 842 320 906 96 144 192 380 572 764 476 716 956 

DSP 9 16 9 16 9 16 0 0 0 0 0 0 0 0 0 

freal [MHz] 45 29 240 233 240 233 110 100 95 275 220 205 275 220 205 

Speed before 
post-processing 
[Gbps] 

0.703 0.906 0.469 0.561 5.625 10.922 1.719 3.125 5.195 1.074 1.719 2.803 2.148 8.594 11.211 

Speed after 
post-processing 
[Gbps] 

- - - - 11.250 14.563 - - - - - - 
8.594 10.313 12.813 

25.781c 30.938c 38.438c 

a. without post-processing / with post-processing 
b. effective delay between new values 

achieved 1.45 Gbps @ 93 MHz. Similarly, for the PRBG with 
FDNR element we get the speed of 25.75 Gbps @ 275 MHz, 
while the authors in [26] have reported 14.07 Gbps @ 146.56 
MHz. 

V. CONCLUSION 

We proposed and experimentally verified a dedicated post-
processing method for chaotic PRBGs with pipelined 
architecture. This method significantly improves the efficiency 
of the PRBGs because we do not need to reject bit positions 
having lower entropy. The method has been applied to two 
different PRBG models based on the logistic map and FDNR 
element. As a result we get significant improvement of the 
PRBG’s throughput: 14.56 Gbps for the PRBG with logistic 
map (33% better than reported in [33]) and 12.81 Gbps for the 

PRBG with FDNR element (14% better than reported in [34]). 
Furthermore, by composing the output stream of 3 data 
channels in PRBG with FDNR element, we get the maximum 
throughput equal to 38.43 Gbps @ 205 MHz, which is the best 
result obtained so far for this class of chaotic PRBGs. Since 
the complete PRBG with post-processing module can be 
easily implemented in a single, low-cost programmable SoC 
device, it can be used in many applications, including complex 
microsystems for scientific purposes as well as commercial 
mobile digital systems with embedded gaming and/or 
communication features. 
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