PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of unsteady effects in the flow through a centrifugal fan using CFD/CAA methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Besides centrifugal pumps, centrifugal fans are the most common turbomachines used in technical applications. They are commonly used in power engineering systems, such as heat engines and chillers, heating, ventilation, and air conditioning systems, supply and exhaust air systems. They are also used as machines consuming final energy (electricity). Therefore, any improvement in their efficiency affects the efficiency of energy generation and the level of electricity consumption. Many efforts have been made so far to find the most efficient numerical method of modelling flows in fans. However, only a few publications focus on the unsteadiness that may have an impact on device efficiency and noise generation. This paper presents an attempt to identify unsteadiness in the flow through a centrifugal fan by means of computational fluid dynamics and computational aeroacoustics methods. The works were performed using the Ansys CFX commercial software and the results of numerical studies are compared with experimental data.
Słowa kluczowe
EN
Rocznik
Strony
169--181
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
  • Institute of Thermal Turbomachinery, Karlsruhe Institute of Technology, Kaiserstraße 12 D-76131 Karlsruhe, Germany
  • Institute of Thermal Turbomachinery, Karlsruhe Institute of Technology, Kaiserstraße 12 D-76131 Karlsruhe, Germany
  • Department of Power Engineering and Turbomachinery, Silesian University of Technology, Poland
  • Department of Power Engineering and Turbomachinery, Silesian University of Technology, Poland
  • Department of Power Engineering and Turbomachinery, Silesian University of Technology, Poland
  • Department of Power Engineering and Turbomachinery, Silesian University of Technology, Poland
Bibliografia
  • [1] Dykas S., Wróblewski W., Rulik S., Chmielniak T.: Numerical method for modelling of acoustic waves propagation. Arch. Acoust. 35(2010), 1, 35–48.
  • [2] Fortuna S., Sobczak K.: Numerical and experimental investigations of the flow in radial fan. Mechanics 27(2008), 4, 138–143
  • [3] Moon Y.J., Cho Y., Nam H.S.: Computation of unsteady viscous flow and aeroacoustic noise of the cross flow fan. Comput. Fluids 32(2003), 7, 995–1015.
  • [4] Rulik S., Dykas S., Wroblewski W.: Modelling of aerodynamic noise using hybrid SAS and DES methods. In: Proc. ASME Turbo Expo 2010: Power for Land, Sea and Air, Glasgow, June 14–18, 2010, 7(2010), 2835–2844., GT2010-2269.
  • [5] Stasko T., Dykas S., Majkut M., Smolka K.: An attempt to evaluate the cycloidal rotor fan performance. Open J. Fluid Dynam. 9(2019), 4.
  • [6] Benedek T., Vad J.: Beamforming based extension of semi-empirical noise modelling for low-speed axial flow fans. Appl. Acoust. 178(2021), 108018.
  • [7] Jiang H., Wang Q., Zheng T.F., Tu C.X., Zhang K.: PIV measurement of internal flow field in a range hood. In: Energy and Mechanical Engineering (S.Y. Liang, Ed.), 2015 Int. Conf. on Energy and Mechanical Engineering, Wuhan, 17-18 Oct. 2015, World Scientific, 2016, 570–575.
  • [8] Probst M., Pritz B.: Quantitative validation of CFD-simulation against PIV data for a centrifugal fan. In: Proc. 14th Int. Symp. on Experimental Computational Aerothermodynamics of Internal Flows, Gdansk 8-11 July 2019.
  • [9] Neise W., Michel U.: Aerodynamic Noise of Turbomachines. DLR-Interner Bericht, Berlin 1994.
  • [10] Jeon W.H., Lee D.J., Rhee H.: An application of the acoustic similarity law to the numerical analysis of centrifugal fan noise. JSME Int. J. C-mech Sy. 47(2004), 3, 845–851.
  • [11] Kissner C., Guerin S.: Comparison of predicted fan broadband noise using a twoversus a three-dimensional synthetic turbulence method. J. Sound Vib. 508(2021), 116221.
  • [12] Jaron R., Herthum H., Franke M., Moreau A., Guerin S.: Impact of turbulence models on RANS-informed prediction of fan broadband interaction noise. In: Proc. 12th Eur. Turbomachinery Conference (ETC), Stockholm, 3-7 April, 2017.
  • [13] Carolus T.: Theoretische und experimentelle Untersuchung des Pumpens von lufttechnischen Anlagen mit Radialventilatoren. PhD thesis, Karlsruhe University of Applied Sciences, Karlsruhe 1984.
  • [14] Blazquez-Navarro R., Corral R.: Prediction of fan acoustic blockage on fan/outlet guide vane broadband interaction noise using frequency domain linearized Navier–Stokes solvers. J. Sound Vib. 508(2021), 116033.
  • [15] Ffowcs-Williams J.E., Hawkings D.L.: Sound generation by turbulence and surfaces in arbitrary motion. Philos. T.R. Soc. Lond. S-A, 264(1969), 1151, 321–342.
  • [16] Lighthill M.J.: On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lon. Ser.-A 211(1952) 1107, 564–587
  • [17] Menter F.R., Egorov Y.: A scale-adaptive simulation model using two-equation models. In: Proc. 43th AIAA Aerospace Sciences Meeting and Exhibit, Reno, 10-13 Jan. 2005, AIAA 2005-1095.
  • [18] Ansys Fluent Theory Guide, 2021R1. https://www.ansys.com (acessed 1 July 12021).
Uwagi
The numerical part of the presented research was supported by the Silesian University of Technology within the Initiative of Excellence – Research University programme (08/050/SDU20/10-2703) and co-financed by the European Union through the European Social Fund (POWR.03.05.00-00-Z305).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ee046ce-7b13-4fa0-a58f-031239c6d9e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.