Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The analysis of the microstructure of the Al-7 wt.% Mg alloy, and these alloys with the addition of Er with Zr and Sc with Zr were performed. The influence of the micro-alloying elements on the microstructure evolution in different states: as-cast, homogenised and extruded were analysed. Design/methodology/approach The microstructure and the Brinell hardness of the high magnesium Al-Mg alloys were investigated in as-cast and as-extruded states. Before and after the extrusion process, microscopic investigations were made using light, scanning, and transmission electron microscopy. Findings The obtained results indicate that the micro-alloying elements in AlMg7 alloy showed high resistance to recrystallisation after extrusion at 400°C. The base AlMg7 alloy was characterised by a partially recrystallised structure after the hot extrusion process. Moreover, it was found out that micro-alloying elements resulted in an increase in the Brinell hardness by approx. 15% in AlMg7 alloy after hot extrusion. Research limitations/implications The development of Al-Mg alloys with a high Mg content is stimulated by the desire to reduce the weight of the alloys by improving the strength of Al solid solution with Mg, as well as by the plastic working processes. Unfortunately, recovery and recrystallisation occur after plastic deformation processes due to the mobility of the grain boundaries, leading to remodelling of the metal structure and consequently decreasing its mechanical properties. One of the ways to inhibit the mobility of the grain boundaries of the deformed Al-Mg alloy is to introduce the micro-alloying elements which form thermally stable dispersoids. The obtained bars with appropriate mechanical properties can be used as a semi-finished product for the forging process to obtain a final product with high mechanical properties, which will be the subject of further research. Practical implications Extruded rods can be used as semi-finished products for cold forging to achieve products with complex shapes and high mechanical properties.Originality/value Conventional extrusion tests for Al-Mg alloys are extremely rare and limited to equal channel angular pressing (ECAP) and hydrostatic extrusion (HE). On the other hand, the recovery and recrystallisation processes which occurred in the AlMg alloys after hot extrusion led to the remodelling of the microstructure of the alloys and a decrease in their mechanical properties. The following study aims to analyse the microstructure of Al-7 wt.% Mg alloys containing additions of Sc and Zr, as well as Er and Zr, subjected to the conventional extrusion process at 400°C. This paper can complement knowledge about the recrystallisation resistance of AlMg alloys after a conventional extrusion process.
Wydawca
Rocznik
Tom
Strony
201--211
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
- Łukasiewicz Research Network – Institute of Non-Ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, 30-059 Kraków, Poland
autor
- Łukasiewicz Research Network – Institute of Non-Ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
autor
- Łukasiewicz Research Network – Institute of Non-Ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
autor
- Łukasiewicz Research Network – Institute of Non-Ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
autor
- Łukasiewicz Research Network – Institute of Non-Ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
autor
- Łukasiewicz Research Network – Institute of Non-Ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
autor
- Łukasiewicz Research Network – Institute of Non-Ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
autor
- Łukasiewicz Research Network – Institute of Non-Ferrous Metals, ul. Sowińskiego 5, 44-100 Gliwice, Poland
autor
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, 30-059 Kraków, Poland
autor
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, 30-059 Kraków, Poland
Bibliografia
- [1] K.M. Youssef, R.O. Scattergood, K.L. Murty, C.C. Koch, Nanocrystalline Al-Mg alloy with ultrahigh strength and good ductility, Scripta Materialia 54/2 (2006) 251-256. DOI: https://doi.org/10.1016/j.scriptamat.2005.09.028
- [2] EN 573-3:2013, Aluminium and aluminium alloys - Chemical composition and form of wrought products - Part 3: Chemical composition and form of products.
- [3] K. Laber, A. Kawałek, S. Sawicki, H. Dyja, J. Borowski, D. Leśniak, H. Jurczak, Investigations of plasticity of hard-deformed aluminium alloys od 5xxx series using torsion plastometer, Archives of Metallurgy and Materials 61/4 (2016) 1853-1860. DOI: https://doi.org/10.1515/amm-2016-0299
- [4] M. Fatmi, F. Sahnoune, H. Belhouchet, T. Chihi, M.A. Ghebouli, B. Ghebouli, B. Barka, T. Rechidi, Thermal aging, kinetics and mechanical properties od Al-7 wt.% Mg alloy, Chinese Journal of Physics 54/2 (2016) 216-222. DOI: https://doi.org/10.1016/j.cjph.2016.04.006
- [5] D. Senczyk, Microstresses, WPP, Poznań, 1997 (in Polish).
- [6] D.H. Jang, Y.B. Park, W.J. Kim, Significant strengthening in superlight Al-Mg alloy with exceptionally large amount of Mg (13%wt) after cold rolling, Materials Science and Engineering: A 744 (2019) 36-44. DOI: https://doi.org/10.1016/j.msea.2018.11.132
- [7] V.J. Prasad, N.M. Rao, S. Kamaluddin, K. Suryna, A Study of Microstructure and Tribological Properties of Al 5083 MMC Processed by Direct Extrusion, Materials Today: Proceedings 5/2/2 (2018) 8232-8240. DOI: https://doi.org/10.1016/j.matpr.2017.11.513
- [8] V. Mishin, A. Godfrey, D.J. Jassen, N. Hansen, Recovery and recrystallization in commercial purity aluminium cold rolled to an ultrahigh strain, Acta Materialia 61/14 (2013) 5354-5364. DOI: https://doi.org/10.1016/j.actamat.2013.05.024
- [9] L. Fu, Y. Peng, J. Huang, Y. Deng, Z. Yin, Microstructures and mechanical properties of Gas Tungsten Arc Welded joints of new Al–Mg–Sc and Al–Mg–Er alloy plates, Materials Science and Engineering: A 620 (2015) 149-154. DOI: https://doi.org/10.1016/j.msea.2014.10.014
- [10] Y. Xia, X. Cai, B. Dong, S. Lin, Wire arc additive manufacturing of Al-Mg-Sc alloy: An analysis of the effect of Sc on microstructure and mechanical properties, Materials Characterization 203 (2023) 113116. DOI: https://doi.org/10.1016/j.matchar.2023.113116
- [11] Y. Lou, Q. Pan, Y. Sun, S. Liu, Y. Sun, L. Long, X. Li, W. Wang, M. Li, Hardening behavior of Al-0.25Sc and Al-0.25Sc-0.12Zr alloys during isothermal annealing, Journal of Alloys and Compounds 818 (2020) 152922. DOI: https://doi.org/10.1016/j.jallcom.2019.152922
- [12] D. Yuzbekova, A. Mogucheva, R. Kaibyshev, Superplasticity of ultrafine-grained Al-Mg-Sc-Zr alloy, Materials Science and Engineering: A 675 (2016) 228-242. DOI: https://doi.org/10.1016/j.msea.2016.08.074
- [13] A. De Luca, D.C. Dunand, D.N. Seidman, Microstructure and mechanical properties of a precipitation-strengthened Al-Zr-Sc-Er-Si alloy with a very small Sc content, Acta Materialia 144 (2018) 80-91. DOI: https://doi.org/10.1016/j.actamat.2017.10.040
- [14] L. Fu, Y. Li, F. Jiang, J. Huang, G. Xu, Z. Yin, On the role of Sc or Er micro-alloying in the microstructure evolution of Al-Mg alloy sheets during annealing, Materials Characterization 157 (2019) 109918. DOI: https://doi.org/10.1016/j.matchar.2019.109918
- [15] Y. Ding, K. Gao, X. Xiong, H. Huang, S. Wen, X. Wu, Z. Nie, R. Shao, Ch. Huang, S. Guo, D. Zhou, High corrosion resistance and strain hardening of high Mg Al-alloy with Er and Zr by using a new reverse stabilization process, Scripta Materialia 171 (2019) 26-30. DOI: https://doi.org/10.1016/j.scriptamat.2019.06.015
- [16] M. Peleg, M.D. Normand, M.G. Corradini, The Arrhenius Equation Revisited, Critical Reviews in Food Science and Nutrition 52/9 (2012) 830-851. DOI: https://doi.org/10.1080/10408398.2012.667460
- [17] D.P. Field, L.T. Bradford, M.M. Nowell, T.M. Lillo, The role of annealing twins during recrystallization of Cu Acta Materialia 55/12 (2007) 4233-4241. DOI: https://doi.org/10.1016/j.actamat.2007.03.021
- [18] R.E. Rupp, A.J. Weldon, T.J. Watt, R. Perez- Bustamante, T, Takata, E.M. Taleff, Recrystallization in Al-Mg alloys after hot compression, in: E. Williams (ed), Light Metals, Springer, Cham, 2016, 163-167. DOI: https://doi.org/10.1007/978-3-319-48251-4_28
- [19] V. Ocenasek, M. Slamova, Resistance to recrystallization due to Sc and Zr addition to Al–Mg alloys, Materials Characterization 47/2 (2001) 157-162. DOI: https://doi.org/10.1016/S1044-5803(01)00165-6
- [20] A.D. Kotov, A.G. Mochugovskiy, A.O. Mosleh, A.A. Kishchik, O.V. Rofman, A.V. Mikhaylovskaya, Microstructure, superplasticity, and mechanical properties of Al–Mg–Er–Zr alloys, Materials Characterization 186 (2022) 111825. DOI: https://doi.org/10.1016/j.matchar.2022.111825
- [21] H. Q. Du, F. Li, L.Gao, Ch. Li, Z.Y. Chen, Recrystallization behavior and texture evolution on extrusion connection process of Mg/Al alloys thickness-oriented bonding sheet, Materials Today Communications 33 (2022) 104350. DOI: https://doi.org/10.1016/j.mtcomm.2022.104350
- [22] R.A. Karnesky, D.C. Dunand, D.N. Seidman, Evolution of nanoscale precipitate in Al microalloyed with Sc and Er, Acta Materialia 57/14 (2009) 4022-4031. DOI: https://doi.org/10.1016/j.actamat.2009.04.034
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2edec4f5-9ef1-4d13-bf1e-88a8838b52e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.