PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparing digital supply chain enablers in uncertain environments: evidence from industrial firms in Colombia and Ecuador

Treść / Zawartość
Identyfikatory
Języki publikacji
EN
Abstrakty
EN
Background: The Digital Supply Chain (DSC) is crucial for industrial firms to remain competitive in an uncertain environment. However, its implementation varies across geographical contexts, and there is limited research comparing enablers in Latin American countries. This study aims to fill this gap by evaluating and comparing these enablers for industrial firms in Ecuador and Colombia, providing insights into the similarities and differences in the management of DSC activities and identifying the key factors influencing successful implementation of the DSC in these regions. Methods: A non-probabilistic convenience sample of 10 Colombian firms located in the city of Medellín and 10 Ecuadorian firms located in the city of Ambato was selected. Using Interpretive Structural Modeling (ISM) and MICMAC techniques, the study identifies and ranks the key enablers of DSCM from the perspective of experienced businessmen from the textile sector in both countries. Results: The results from the Colombian firms reveal a segmented hierarchy of dependencies among the enablers, with factors such as greater flexibility in supply chain management and the ability to analyze real-time business data having the highest impact. In contrast, the Ecuadorian perspective highlights the paramount importance of management commitment and change management programs, as well as factors related to product/service quality and supply chain complexity. Conclusions: The study provides empirical insights and practical guidance for contemporary supply chain practitioners in Latin America. It also contributes to the understanding of the enablers of DSC in different geographical contexts, which is essential for the successful implementation of DSC initiatives. This comparative analysis adds valuable insights to the field and should help practitioners navigate the uncertainties of supply chain management in diverse international settings.
Czasopismo
Rocznik
Strony
339--355
Opis fizyczny
Bibliogr. 55 poz., rys., wykr.
Twórcy
  • Management and Economics Science Department, Research and Enterprise Development (R.E.D.), Tecnológico de Antioquia I.U., Medellín, Colombia
  • Facultad de Contabilidad y Auditoría, Universidad Técnica de Ambato, Ecuador
  • Management and Economics Science Department, Research and Enterprise Development (R.E.D.), Tecnológico de Antioquia I.U., Medellín, Colombia
Bibliografia
  • 1. Aboalganam, K., Awad, H., 2023, The impact of agile strategy on supply chain performance: The mediating role of supply chain practices and customer relationships in the retail sector in Jordan. Uncertain Supply Chain Management, 11(4), 1627-1634. https://www.doi.org/10.5267/j.uscm.2023.7.006
  • 2. Agrawal, N., Seth, N., Agarwal, A., 2020, Modeling supply chain enablers for effective resilience. Continuity & Resilience Review, 2(2), 97-110. https://doi.org/10.1108/CRR-05-2020-0017
  • 3. Ageron, B., Bentahar, O., & Gunasekaran, A., 2020, Digital supply chain: challenges and future directions. Supply Chain Forum: An International Journal, 21(3), 133-138. https://doi.org/10.1080/16258312.2020.1816361
  • 4. Agrawal, N., 2019, Modeling Deming's quality principles to improve performance using interpretive structural modeling and MICMAC analysis. International Journal of Quality & Reliability Management, 36(7), 1159-1180. https://doi.org/10.1108/IJQRM-07-2018-0204
  • 5. Agrawal, P., & Narain, R., 2018, Digital supply chain management: An Overview. IOP Conference Series: Materials Science and Engineering, 455(1), 012074. https://doi.org/10.1088/1757-899X/455/1/012074
  • 6. Aityassine, F., Soumadi, M., Aldiabat, B., Al-Shorman, H., Akour, I., Alshurideh, M., & Al-Hawary, S., 2022, The effect of supply chain resilience on supply chain performance of chemical industrial companies. Uncertain Supply Chain Management, 10(4). https://doi.org/1271-1278. 10.5267/j.uscm.2022.8.001
  • 7. Akbari, M., & Hopkins, J., 2022, Digital technologies as enablers of supply chain sustainability in an emerging economy. Operations Management Research, 15(3-4), 689-710. https://doi.org/10.1007/s12063-021-00226-8
  • 8. Alzarooni, A., Khan, S., Gunasekaran, A., & Mubarik, M., 2022, Enablers for digital supply chain transformation in the service industry. Annals of Operations Research, 1-25. https://doi.org/10.1007/s10479-022-05047-x
  • 9. Alzoubi, H., & Yanamandra, R., 2020, Investigating the mediating role of information sharing strategy on agile supply chain. Uncertain Supply Chain Management, 8(2), 273-284. https://doi.org/10.5267/j.uscm.2019.12.004
  • 10. Ansari, Z., & Kant, R., 2017, A state-of-art literature review reflecting 15 years of focus on sustainable supply chain management. Journal of Cleaner Production, 142, 2524-2543. https://doi.org/10.1016/j.jclepro.2016.11.023
  • 11. Attaran, M., 2007, RFID: an enabler of supply chain operations. Supply Chain Management: An International Journal, 12(4), 249-257. https://doi.org/10.1108/13598540710759763
  • 12. Attaran, M., 2020, Digital technology enablers and their implications for supply chain management. In Supply Chain Forum: An International Journal, 21(3), 158-172. https://doi.org/10.1080/16258312.2020.1751568
  • 13. Baah, C., Opoku, D., Acquah, I., Agyabeng-Mensah, Y., Afum, E., Issau, K., ... & Faibil, D., 2022, Effect of information sharing in supply chains: understanding the roles of supply chain visibility, agility, collaboration on supply chain performance. Benchmarking: An International Journal, 29(2), 434-455. https://doi.org/10.1108/BIJ-08-2020-0453
  • 14. Blome, C., Schoenherr, T., & Rexhausen, D., 2013, Antecedents and enablers of supply chain agility and its effect on performance: a dynamic capabilities perspective. International Journal of Production Research, 51(4), 1295-1318. https://doi.org/10.1080/00207543.2012.728011
  • 15. Büyüközkan, G., & Göçer, F., 2018, Digital Supply Chain: Literature review and a proposed framework for future research. Computers in Industry, 97, 157-177. https://doi.org/10.1016/j.compind.2018.02.010
  • 16. Carvalho, H., Azevedo, S., & Cruz-Machado, V., 2012, Agile and resilient approaches to supply chain management: influence on performance and competitiveness. Logistics Research, 4, 49-62. https://doi.org/10.1007/s12159-012-0064-2
  • 17. Choudhury, A., Behl, A., Sheorey, P., & Pal, A., 2021, Digital supply chain to unlock new agility: a TISM approach. Benchmarking: An International Journal, 28(6), 2075-2109. https://doi.org/10.1108/BIJ-08-2020-0461
  • 18. Christopher, M., 2000, The agile supply chain: competing in volatile markets. Industrial Marketing Management, 29(1), 37-44. https://doi.org/10.1016/S0019-8501(99)00110-8
  • 19. Ciccullo, F., Pero, M., Caridi, M., Gosling, J., & Purvis, L., 2018, Integrating the environmental and social sustainability pillars into the lean and agile supply chain management paradigms: A literature review and future research directions. Journal of Cleaner Production, 172, 2336-2350. https://doi.org/10.1016/j.jclepro.2017.11.176
  • 20. Dev, N., Shankar, R., & Kumar Dey, P., 2014, Reconfiguration of supply chain network: an ISM-based roadmap to performance. Benchmarking: An International Journal, 21(3), 386-411. https://doi.org/10.1108/bij-03-2012-0018
  • 21. Dewangan, D., Agrawal, R., & Sharma, V., 2015, Enablers for competitiveness of Indian manufacturing sector: an ISM-fuzzy MICMAC analysis. Procedia-Social and Behavioral Sciences, 189, 416-432. https://doi.org/10.1016/j.sbspro.2015.03.200
  • 22. Dixit, V., Malviya, R., & Pandey, S., 2021, Modelling the Digital Supply Chain enablers using TISM and MICMAC approach. Journal of Engineering Research, ICIPPSD Special Issue, 1-12. https://doi.org/10.36909/jer.ICIPPSD.15537
  • 23. Duperrin, J., & Godet, M., 1973, Hierarchization method for the elements of a system. An attempt to forecast a nuclear energy system in its societal context (No. CEA-R--4541). CEA.
  • 24. Farajpour, F., Hassanzadeh, A., Elahi, S., & Ghazanfari, M., 2022, Digital supply chain blueprint via a systematic literature review. Technological Forecasting and Social Change, 184, 121976. https://doi.org/10.1016/j.techfore.2022.121976
  • 25. Hung, J., He, W., & Shen, J., 2020, Big data analytics for supply chain relationship in banking. Industrial Marketing Management, 86, 144-153. https://doi.org/10.1016/j.indmarman.2019.11.001
  • 26. Iddris, F., 2018, Digital supply chain: survey of the literature. International Journal of Business Research and Management, 9(1), 47-61.
  • 27. Janes, F., 1988, Interpretive structural modelling: a methodology for structuring complex issues. Transactions of the Institute of Measurement and Control, 10(3), 145-154. https://doi.org/10.1177/014233128801000306
  • 28. Joshi, S., Singh, R., & Sharma, M., 2023, Sustainable agri-food supply chain practices: Few empirical evidences from a developing economy. Global Business Review, 24(3), 451-474. https://doi.org/10.1177/0972150920907014
  • 29. Jum'a, L., & Kilani, S., 2022, Adoption enablers of big data analytics in supply chain management practices: The moderating role of innovation culture. Uncertain Supply Chain Management, 10(3), 711-720. https://doi.org/10.5267/j.uscm.2022.5.004
  • 30. Kausar, K., Garg, D., & Luthra, S., 2017, Key enablers to implement sustainable supply chain management practices: An Indian insight. Uncertain Supply Chain Management, 5(2), 89-104. https://doi.org/10.5267/j.uscm.2016.10.005
  • 31. Khan, S., Kusi-Sarpong, S., Gupta, H., Arhin, F., Lawal, J., & Hassan, S., 2021, Critical factors of digital supply chains for organizational performance improvement. IEEE Transactions on Engineering Management, 1-15. https://doi.org/10.1109/TEM.2021.3052239
  • 32. Kim, C., Son, B., & Bourlakis, M., 2012, Factors affecting successful adoption of ubiquitous computing technology in supply chain contexts: a comparative analysis of UK and Korea. The International Journal of Logistics Management, 23(2), 280-306. https://doi.org/10.1108/09574091211265396
  • 33. Kumar Sharma, S., & Bhat, A., 2014, Modelling supply chain agility enablers using ISM. Journal of Modelling in Management, 9(2), 200-214. https://doi.org/10.1108/JM2-07-2012-0022
  • 34. Kumar, A., Mani, V., Jain, V., Gupta, H., & Venkatesh, V., 2023, Managing healthcare supply chain through artificial intelligence (AI): A study of critical success factors. Computers & Industrial Engineering, 175, 108815. https://doi.org/10.1016/j.cie.2022.108815
  • 35. Kusi-Sarpong, S., Orji, I., Gupta, H., & Kunc, M., 2021, Risks associated with the implementation of big data analytics in sustainable supply chains. Omega, 105, 102502. https://doi.org/10.1016/j.omega.2021.102502
  • 36. Lee, K., Azmi, N., Hanaysha, J., Alzoubi, H., & Alshurideh, M., 2022, The effect of digital supply chain on organizational performance: An empirical study in Malaysia manufacturing industry. Uncertain Supply Chain Management, 10(2), 495-510. https://doi.org/10.5267/j.uscm.2021.12.002
  • 37. Li, X., Chung, C., Goldsby, T., & Holsapple, C., 2008, A unified model of supply chain agility: the work‐design perspective. The International Journal of Logistics Management, 19(3), 408-435. https://doi.org/10.1108/09574090810919224
  • 38. Malone, D., 1975, An introduction to the application of interpretive structural modeling. Proceedings of the IEEE, 63(3), 397-404. https://doi.org/10.1109/PROC.1975.9765
  • 39. Mohanty, M., 2018, Assessing sustainable supply chain enablers using total interpretive structural modeling approach and fuzzy-MICMAC analysis. Management of Environmental Quality: An International Journal, 29(2), 216-239. https://doi.org/10.1108/MEQ-03-2017-0027
  • 40. Power, D., Sohal, A., & Rahman, S., 2001, Critical success factors in agile supply chain management‐An empirical study. International Journal of Physical Distribution & Logistics Management, 31(4), 247-265. https://doi.org/10.1108/09600030110394923
  • 41. Queiroz, M., Pereira, S., Telles, R., & Machado, M., 2021, Industry 4.0 and digital supply chain capabilities: A framework for understanding digitalisation challenges and opportunities. Benchmarking: an International Journal, 28(5), 1761-1782. https://doi.org/10.1108/BIJ-12-2018-0435
  • 42. Raj, A., Dwivedi, G., Sharma, A., de Sousa Jabbour, A., & Rajak, S., 2020, Barriers to the adoption of industry 4.0 technologies in the manufacturing sector: An inter-country comparative perspective. International Journal of Production Economics, 224, 107546. https://doi.org/10.1016/j.ijpe.2019.107546
  • 43. Rasool, F., Greco, M. and Grimaldi, M., 2022, Digital supply chain performance metrics: a literature review. Measuring Business Excellence, 26(1), 23-38. https://doi.org/10.1108/MBE-11-2020-0147
  • 44. Sage, A., & Smith, T., 1977, On group assessment of utility and worth attributes using interpretive structural modeling. Computers & Electrical Engineering, 4(3), 185-198. https://doi.org/10.1016/0045-7906(77)90029-5
  • 45. Scuotto, V., Caputo, F., Villasalero, M., & Del Giudice, M., 2017, A multiple buyer--supplier relationship in the context of SMEs' digital supply chain management. Production Planning & Control, 28(16), 1378-1388. https://doi.org/10.1080/09537287.2017.1375149
  • 46. Sharma, H., Sohani, N., & Yadav, A., 2022, Comparative analysis of ranking the lean supply chain enablers: An AHP, BWM and fuzzy SWARA based approach. International Journal of Quality & Reliability Management, 39(9), 2252-2271. https://doi.org/10.1108/IJQRM-04-2021-0114
  • 47. Sindhwani, R., & Malhotra, V., 2017, Modelling and analysis of agile manufacturing system by ISM and MICMAC analysis. International Journal of System Assurance Engineering and Management, 8, 253-263. https://doi.org/10.1007/s13198-016-0426-2
  • 48. Vehovar, V., Toepoel, V., & Steinmetz, S., 2016, Non-probability sampling. In C. Wolf, D. Joye, T. Smith, & Y. Fu, (Eds.), The Sage Handbook of Survey Methods (pp. 329--345). Thousand Oaks, CA: Sage Publications.
  • 49. Wang, B., Childerhouse, P., Kang, Y., Huo, B., & Mathrani, S., 2016, Enablers of supply chain integration: interpersonal and interorganizational relationship perspectives. Industrial Management & Data Systems, 116(4), 838-855. https://doi.org/10.1108/IMDS-09-2015-0403
  • 50. Wankhade, N., & Kundu, G., 2020, Modelling the enablers to explore the driving power, dependence and strategic importance in achieving SC agility. International Journal of Value Chain Management, 11(1), 63-95. https://doi.org/10.1504/IJVCM.2020.105482
  • 51. Weerabahu, W., Samaranayake, P., Nakandala, D., & Hurriyet, H., 2022, Digital supply chain research trends: a systematic review and a maturity model for adoption. Benchmarking: An International Journal, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/BIJ-12-2021-0782
  • 52. Hellweg, F., Lechtenberg, S., Hellingrath, B., & Thomé, A., 2021, Literature review on maturity models for digital supply chains. Brazilian Journal of Operations & Production Management, 18(3), 1-12. https://doi.org/10.14488/BJOPM.2021.022
  • 53. Yang, M., Fu, M., & Zhang, Z., 2021, The adoption of digital technologies in supply chains: Drivers, process and impact. Technological Forecasting and Social Change, 169, 120795. https://doi.org/10.1016/j.techfore.2021.120795
  • 54. Yeager, D., Krosnick, J., Chang, L., Javitz, H., Levendusky, M., Simpser, A., & Wang, R., 2011, Comparing the accuracy of RDD telephone surveys and internet surveys conducted with probability and non-probability samples. Public Opinion Quarterly, 75(4), 709-747. https://doi.org/10.1093/poq/nfr020
  • 55. Zhao, G., Liu, S., Wang, Y., Lopez, C., Zubairu, N., Chen, X., ... & Zhang, J., 2022, Modelling enablers for building agri-food supply chain resilience: insights from a comparative analysis of Argentina and France. Production Planning & Control, 1-25. https://doi.org/10.1080/09537287.2022.2078246
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Identyfikator YADDA
bwmeta1.element.baztech-2edb8c92-1ddd-4b6d-9efe-db79b16a83cc