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Abstract. Singly and doubly vertex-weighted Wiener polynomials are generalizations of
both vertex-weighted Wiener numbers and the ordinary Wiener polynomial. In this paper,
we show how the vertex-weighted Wiener polynomials of a graph change with subdivision
operators, and apply our results to obtain vertex-weighted Wiener numbers.
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1. INTRODUCTION

In this paper, we are concerned with connected finite graphs without loops or multiple
edges. Let G be such a graph with the vertex set V(G) and the edge set E(G). The
shortest-path distance between vertices u and v in G is denoted by d¢g(u, v). The degree
of a vertex u in G is denoted by dg(u). If there is no ambiguity on G, we omit the
subscript G in dg(u,v) and dg(u). We denote by |S| the cardinality of a set S.

In theoretical chemistry, the physico-chemical properties of chemical compounds
are often modeled by means of molecular-graph-based structure-descriptors, which are
also referred to as topological indices [9,26]. The Wiener number (or Wiener index),
introduced by Wiener in 1947 [27], is the first reported distance-based topological index.
This index was used for modeling the shape of organic molecules and for calculating
several of their physico-chemical properties. The Wiener number of G is defined as

WG = Y duw),

{u,v}EV(G)

where the summation is taken over all unordered pairs of vertices u and v. Details on
the Wiener index, and its theory and applications can be found in [7,8,10,12,14,20,24].
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The (unweighted) Wiener polynomial of G is defined as

Py(G;x) = Z gdwv)
{uv}CV(G)

with  a dummy variable. This coincides with definitions of Hosoya [17] and Sagan
et al. [23]. Some authors prefer the name Hosoya polynomial.
A corresponding singly vertez-weighted Wiener polynomial of G is defined as [19]

. _ 1 d(u,v)+1
PG =5 Y ldlw) + dw)a
{u,v}CV(G)

A doubly vertex-weighted Wiener polynomial of G is defined as [19]

Ppu(Gix) = > [d(w)d(v)]zo+2.
{u,v}gV(G)

The following relationship between the Wiener number and the Wiener polynomial of
G was noted in [17]:
W(G) = Py(G;1).

The corresponding generalizations for the singly and doubly vertex-weighted cases
were given in [19]:

W@ = [Lra@n)]

w0 = [2rGin)]

Here, W, (G) denotes the singly vertex-weighted Wiener number of G,
1
W,(G) = 5 Z [d(u) + d(v)]d(u,v).
{uw}CV(G)

Also, W,,(G) denotes the doubly vertex-weighted Wiener number of G,

Wi(G) = > [dw)d(v)ld(u,v).

{uv}CV(G)

The Zagreb indices were introduced by Gutman and Trinajsti¢ in 1972 [16]. The
first Zagreb index M;(G) of G is defined as

M(G)= > dw)?

ueV(QG)

It can also be expressed as a sum over edges of G,

Mi(G)= ) [d(u)+d(v)].

wveE(G)
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The second Zagreb index My (G) of G is defined as

My(G)= > d(u)d(v).

uwweE(G)

Obviously, the Zagreb indices can be viewed as the contributions of pairs of adjacent
vertices to vertex-weighted Wiener numbers. We refer the reader to [2,4,13,15,21,22],
for more information about these indices.

It is well-known that many graphs of general, and in particular of chemical interest,
arise from simpler graphs via various graph operators. It is, hence, important to
understand how certain invariants of a graph change under graph operators. In this
paper, we show how the singly and doubly vertex-weighted Wiener polynomials change
with subdivision operators, and apply our results to singly and doubly vertex-weighted
Wiener numbers. Readers interested in more information on computing topological
indices and polynomials of graph operations are referred to [1,3,5,6,11,18,25,28].

2. DEFINITIONS AND PRELIMINARIES

In this section, we recall the definitions of subdivision related graphs from the reference
[28], and state some preliminary results about them.

Suppose G = (V(G), E(G)) is a connected graph with the vertex set V(G) and the
edge set E(G). Let V(e) denote the set of two end vertices of an edge e of G. Related
to the graph G, the line graph L(G), the subdivision graph S(G), and the total graph
T(G) are defined as follows:

— Line graph: L(G) is the graph whose vertices correspond to the edges of G with
two vertices being adjacent if and only if the corresponding edges in G have a
vertex in common; see Figure 1(b).

— Subdivision graph: S(G) is the graph obtained from G by replacing each of its
edges by a path of length two, or equivalently, by inserting an additional vertex of
degree 2 into each edge of G; see Figure 1(c).

— Total graph: T(G) is the graph whose vertex set is V/(G)UE(G), with two vertices
of T'(G) being adjacent if and only if the corresponding elements of G are adjacent
or incident; see Figure 1(d).

Two extra subdivision operators named R(G) and Q(G) are defined as follows:

— R(G) is the graph obtained from G by adding a new vertex corresponding to
each edge of G, and by joining each new vertex to the end vertices of the edge
corresponding to it; see Figure 2(a).

— Q(G) is the graph obtained from G by inserting a new vertex into each edge of G,
and by joining with edges those pairs of new vertices which lie on adjacent edges
of G; see Figure 2(b).
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(a) A graph G (b) The line graph L(QG)
//K %
(¢) The subdivision-graph S(G) ) The total graph T(G
Fig. 1. A graph G and the subdivision operators L(G ,and T(G
(a) The graph R(G) (b) The graph Q(G)

Fig. 2. The two additional subdivision operators R(G) and Q(G)
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Now, consider the sets FE(G) and EV(G) for the graph G = (V(G), E(G)) as
follows:

EE(G) = {e€'le,e’ € E(G),|V(e)nV(e)| =1}, EV(G)={evle € E(G),v € V(e)}.
It is easy to see that

pp@l- 2 (") - @ -E@1 BVE)-21EG).
ueV(G)

Based on the definitions of these sets, we may write the subdivision-related graphs as

L(G) = (E(G), BE(G)),

5(G) = (V(G) U E(G), EV(G)),

T(G) = (V(G) U E(G), E(G) U EE(G) U EV(G)),
R(G) = (V(G)U E(G), E(G) U EV(G)),

Q(G) = (V(G) U E(G), EE(G) U EV(G))

Obviously,

| :
V(S(G)] = V(T(G))] = [V(R(G))| = [V(Q(G))| = [V(G)| + |E(G)|.
Also,

[E(S(G)| =2|E(G)], [E(R(G))|=3|E(G)], IE(T(G))I=%M1(G)+2|E(G)I,

B@Q(G)| = 5M(C) +]E@)], |BLG)] = ;Mi(G) ~ B

In the following lemma, we find the relationship among the degrees of vertices in
subdivision-related graphs.

Lemma 2.1. For any vertez v € V(G),
dr(c)(v) = dr(c)(v) = 2ds(c)(v) = 2dg(c) (v) = 2dc(v),

and for any edge e = uv € E(G),

ds(e)(e) = dr(e)(e) =2, dr)(e) = do)(e) = die(e) +2 = da(u) + dg(v).
Proof. By definition of the subdivision-related graphs, the proof is obvious. O

We define the third Zagreb index M3(G) of the graph G = (V(G), E(Q)) as follows:

My(G)= Y dw)?= Y [dw)’+d(v)]
ueV(QG) weE(Q)

Now, we use Lemma 2.1 to determine the first Zagreb index of subdivision-related
graphs.
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Theorem 2.2.
(i) Mi(L(G)) = M3(G) 4+ 2M3(G) — AM:(G) + 4 |E(G)],
(i) Mi(S(G)) = M1(G) +4|E(G)],
(iii) M1(T(G)) = M3(G) + 2M5(G) + 4M1(G),
(iv) Mi(R(G)) =4M1(G) +4|E(G)],
) Ml(Q(G)) = M3(G) +2M>(G) + My (G).

T
S
H
<<:
(oW

efinition of the line graph L(G) and Lemma 2.1,

Mi(L(G) = Y duey(e)?= D [de(u)+da(v) -2

eeV(L(Q)) weEE(G)
= Y da(w?®+da)’] +4[E@)]+2 Y do(w)da(v
weE(G) weE(G)
-4 > [de(u) + da(v)]
weEE(G)

= My(G) + 2Ma(G) — 4M (G) + 4 |E(G).

(ii) By definition of the subdivision graph S(G) and Lemma 2.1,

Q)= Y de(w?+ Y 2°=M(G)+4|EG).

weV(G) e€E(G)

(iii) By definition of the total graph T'(G) and Lemma 2.1,

MyT(G) = Y Qdaw)?+ > lda(u)+da(v)?

ueV(Q) wveE(G)
=4 Z dG Z [dG( ) —l—dc; +2 Z dG
ueV(G) weE(G) weEE(QG)

= M;(G) + 2M>(G) + 4M; (G).

(iv) By definition of R(G) and Lemma 2.1,

M(RG) = Y (2decw)?+ Y 22=4M(G)+4|E(G)|.
ueV(QG) e€E(G)

(v) By definition of Q(G) and Lemma 2.1,

MQG) = > dew?+ > [da(u)+da(v)]

weV(G) weE(G)
=M (G)+ > [de(w)?+da®)?]+2 > de(u)de(v)
uwveE(G) w€EE(G)
= M3(G) +2M2(G) + M1 (G). N
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In the following lemma, we summarize the relations among distances between
vertices in subdivision-related graphs.

Lemma 2.3 ([28]).
(i) For any two vertices v,v' € V(G),

1
ids(c)(v, V') = dpc)(v,0") = dge)(v,v") = dgg)(v,v") =1 = dg(v,0").

(ii) For any two edges e, e’ € E(Q),

1
§d5(c)(€, ') = dple,¢) = drg)le,e') — 1 =dga)(e, ¢') = dr) (e, ¢).

(iii) For any vertez v € V(G) and edge e € E(G),

1
5(%(@)(&”) + 1) = dpe(e,v) = drie(e,v) = dg(a) (e, v).

3. MAIN RESULTS

In this section, we prove several interesting relationships among vertex-weighted Wiener
polynomials of subdivision operators. Then, by taking the first derivative of these
relations at x = 1, we get the corresponding relationships for vertex-weighted Wiener
numbers. Throughout this section, let G be a simple connected graph with n vertices
and m edges. We start this section with the following simple lemma. Results follow
easily from the definitions, so their proofs are omitted.

Lemma 3.1.

(i) Py(G;1) =m(n—1),

(iif) Ppo(G;1) =2m? — 1M, (G),

(iv) P)(G;1) = Wy(G) +m(n —1),

(v) P (G51) = Wy (G) + 4m? — M1 (G)
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Proof. By definition of the singly vertex-weighted Wiener polynomial and Lemma 2.1,
the polynomial P,(S(G);x) can be obtained by adding three polynomials as follows:

P,(S(G);z) = Z [dS(G)(U) + ds(g)(v)]xds<c)(u’”)+l
{u,v}CV(G)

1 dsiay(enf)+1
+5 > 24 2dats@ (3.2)
{e.fYCB(G)

+7 Z Z dS(G ]dS(G)(uve)'i‘l.

ueV(G) e€E(G)

Now, we use Lemma 2.1 and Lemma 2.3 to compute each polynomial, separately.
The first polynomial is computed as follows:

1
2 > [ds(e)(w) + ds(ay(v)]ats@ )t
{u,v}CV(G)

L 1
=5 Y e +de(¥eI = —p(Gra?).

{u,v}CV(G)
The second polynomial is computed as follows:

2 Z phs@(eN+l — 9 Z e (eN+l — QxPO(L(G);xz).
{e,f}CE(G) {e,f}CE(G)

The third polynomial is computed as follows:

1
Z Z dS ] dsc)(u,e)+1 _ 1 Z Z [dR(G)(u) +4}x2dR(G)(’U‘»€)
ueV(G) e€E(G)

uEV (G) e€E(G)

Z > @ *i Yo Y ldr(w) + 2Jair@ 0

weV(G) e€ B(G) weV(G) e€ B(G)
Il Loy 2y (uw) L 2 (e, f)
= [ipo(T(G),x ) — 5 Z 29T(G) — 5 Z 14er(e) }
{u,v}CV(G) {e,f}ICE(G)
1 1 .,
+ {ﬁpv(R(G); z?) — 1 Z [dr(c)(u) + dp(g) (v)]*HrE (0)
{u,v}CV(G)

1 e
- Z 2 4 Q}xQdmc)( 4,f)}
{e.f}CE(G)
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= [%Po(T(G);f) - % Z gPdauv) _ % Z x2dL<G)(e’f)]
{uv}CV(G) {e,f}CE(G)
1 1
+ [P R@ra) = Y Rda(u) + 2dG(0)]a*e )
{uv}CV(G)
_ Z 4L (e,f)+2}
{e.f}CE(G)
1 2 1 2 1 2
= [5P(T(G):a%) = SPo(Gia?) = SPo(L(G); %)
1 1
+ 53 PURG)?) = — PulGia®) = a* Py (L(G)s )|
1

Pv(R(G)§ ZUQ) - %PE(G; 332) — %PO(G;:EQ) + %PO(T(G);.Zz)

T 22

- (xz + %)PO(L(G);xQ).

Now, Eq. (3.1) is obtained by adding the above three polynomials and simplifying
the resulting expression. O

By taking the first derivative from Eq. (3.1) with respect to x, and then by
substituting z = 1, we can prove the following corollary. We also use Lemma 3.1 to
simplify the relation.

Corollary 3.3.
W,(S(Q)) = W,(R(G)) + W(T(GQ)) + W(L(GQ)) — W(G) —m(n+2m — 1).

By rearranging the terms in the proof of Theorem 3.2, we can obtain an alternative
expression for P,(S(G);x).

Theorem 3.4.
PuS(@)ia) = (14 2 = SV PGi#?) = 5 Pu(Q(G)sa®) + 5 Pu(T(G)i?)
v ) T x2 v ) .’If2 v ) xz v I (33)
— Ry(G;2®) + Po(T(G); %) + (22 — 1) R (L(G); 2°).
Proof. Using Eq. (3.2) and the proof of Theorem 3.2, we have
PA(S(G);a) =~ Pu(Gra?) + 22 Po(L(G); o)
(3.4)

. d u,e)+1
t3 S ldsio(u) + 2Jats@ et
ueV(G) e€E(G)
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By Lemma 2.1 and Lemma 2.3, the last polynomial in Eq. (3.4) can also be computed
as follows:

Z Z [ds(q)(u) + 2Jzds@ e+l

uEV(G) ecE(G)

Z Z [dT(G)(U) —dQ(G)(u)]de<G)(u’e)+1 + Z Z rdsc)(we)+1

ueV(G) eeE(G) ueV (G) ecE(G)

Z D (e (u) + dra) (e)]a?Hre ()

ueV(G) e€E(G)

_Z Z Z dQ(G +dQ(G)( ez 2dQ(G)(U€)+ Z Z 22476 (u.e)

uEV(G) e€E(G) ueV(G) ecE(G)

1 1 w
= [SP@EGx =5 Y e W)+ drg @)
{u,0}CV(G)

> ldr(e) + dry (Nl eD)]
{e.f}CE(G)

1 1
- [SREEE -5 Y o)+ doe ()]s @@ )
{u,w}CV(G)

2 Z [dQ(G)(e) + dQ(G)(f)]xQdQ(G)(&f)}
{e,f}CE(G)

+[REEG)a) - > et S e )]

{uv}CV(G) {e,f}CE(G)

= [BR@@ra) - Y o) + de(w)ae )]

2
. {u,v}CV(G)
! : g2 1 2(dg (u,v)+1)
- {EPU(Q(G)7J; ) — B Z [da(u) + dg(v)]ax=te ]
{u,v}CV(G)
+ {PO(T(G); x2) _ Z p2dc(uw) _ Z IQdL(G)(e,f)}
{uv}CV(G) {e.f}CE(G)

= (1= 2)Pu(@5a%) — 5 PQC):a?) + 5 PuT(G); ) — Po(5a?)

+ Ro(T(G);2%) = Po(L(G); 2?).

Now, using Eq. (3.4), we can get the desired result. O
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By taking the first derivative from Eq. (3.3) with respect to x, and then by
substituting x = 1, we easily arrive at:

Corollary 3.5.

Wy (5(G)) = 2W,(T(G)) = 2W,(Q(G)) + 2W(T(G)) + 2W(L(G)) — 2W(G)
+m(n—m—2).

By eliminating the term P,(S(G); ) in Eq. (3.1) and Eq. (3.3), we can obtain a
formula for P,(R(G);z) similar to Eq. (3.3).
Corollary 3.6.
Py(R(G);x) = 2(z — 1) Py(G;x) = 2P, (Q(G); 2) + 2P, (T(G); ) — xPo(Gs )

, (3.5)
+ 2Py (T(G); x) + (227 — 2) Py (L(G); ).

From Eq. (3.5), we obtain the following relationship among vertex-weighted Wiener
numbers.

Corollary 3.7.
Wy (R(G)) = 2W,(T(G)) = 2W,(Q(G)) + W(T(G)) + W(L(G)) — W(G)
+m(2n+m —3).

By combining Egs. (3.3) and (3.5), we get a relation among the singly
vertex-weighted Wiener polynomials of S(G), R(G), Q(G), T(G), and G.

Corollary 3.8.

2P, (S(G);x) + (2° — 2) Py (G5 2%) — Py (Q(G);2?) (3.6)
+ P,(T(G); 2%) — P,(R(G); 2%) + (22" — 22°) Py(L(G); 2*) = 0. '
Proof. By Eq. (3.5),
22 [Po(T(G); 2%) — Po(G; 2?)] = Py(R(G); 2%) — 2(2? — 1) Py(G; 2°%) + 2P, (Q(G); %)
— 2P, (T(G); 2?) — (22" — 2*)Py(L(G); x?).

Also, by multiplying the Eq. (3.3) by 22, we have

2P, (8(G);x) = (2* + & = 2)P,(G; %) — P,(Q(G);2°) + P, (T(G); 2°)

+ 2222 — 1) Py (L(G); 22) + 22[Po(T(G); 2%) — Po(G; 2?)].

Now, by eliminating the term x?[Py(T(G); 2?) — Po(G;x?)] between the above two
equations, we can get the desired result. O

From Eq. (3.6) we obtain the following relation for the vertex-weighted Wiener
numbers of four subdivisions.



16 Mahdieh Azari, Ali Iranmanesh, and Tomislav Dosli¢

Corollary 3.9.
2W,(Q(Q)) + 2W,(R(G)) — 2W,(T(Q)) — W, (S(G)) = m(3n + 3m — 4).

We notice that the result does not depend neither on W(G) nor on W, (G).

Now, we turn our attention toward doubly vertex-weighted Wiener polynomials.
In the next theorem, we obtain a relation among doubly vertex-weighted Wiener
polynomials of S(G), R(G), and G.

Theorem 3.10.

Poo(S(G): ) = (i2 _ %)va(c; ) + Z—;PW(R(G);xQ)

+ (42? — 223 Py (L(G); 2?).

(3.7)

Proof. By definition of the doubly vertex-weighted Wiener polynomial and Lemma 2.1,
the polynomial P,,(S(G);x) can be obtained by adding three polynomials as follows:

P,,(S(G);x) = Z [ds () (w)ds(a) (U)]xds(g)(u,vHQ
{u,v}CV(G)

+ Y Rxetseen) (3.8)
{e.fYCE(G) '

+ Z Z [dS(G)(U)XQ]de(G)(uve)-&-Z.
)

ueV(G) eeE(G

Now, we use Lemma 2.1 and Lemma 2.3 to compute these polynomials.
The first polynomial is computed as follows:

> ldsio)(Wdse)(v)]ats@ )+

{u,0}CEV(G)
_ Z [dG(u)dg(v)]l'2dG(u’v)+2 _ %va(G; $2).
{u} V(@) v

The second polynomial is computed as follows:

4 ) e oy N e DT = 492 Py (L(G); 2).
{e.f}CE(G) {e.fYCE(@G)
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The third polynomial is computed as follows:

YD ldsie)(w) x 2atse et

ueV(G) e€E(G)

1
~ 3 Z Z [dRr(c)(u) x 2]x2dn<c>(u,e)+1

ueV (G) eeE(G)

1 1 )
= ﬁPUU(R(Gﬁ x2) —5 Z [dR(G) (u)dR(G) (v)]xQdR(CU(“’T Y41
{u,v}CV(G)
. Z [2 x 2]x2dR<c>(eyf)+1
{e,f}CE(G)
1 1
= ER)U(R(G);QE2) — 5 Z [ng(u) X 2dg(v)}x2da(“’”)+1
{u,v}CV(G)
-2 Z 22dL(a)(e.f)+3
{e,f}CE(G)
1 2
= 53 Pon(R(G);2%) = 5 P (Gia?) = 207 Ro(L(G); 2%).

Now, Eq. (3.7) is obtained by adding the above three polynomials, and simplifying
the resulting expression. O

By taking the first derivative from Eq. (3.7) with respect to z, and then by
substituting x = 1, we can prove the following corollary. We also use Theorem 2.2 and
Lemma 3.1, to simplify the relation.

Corollary 3.11.
Wi (S(G)) = Wiy (R(G)) = 2W, (G) + AW (L(G)) + 2m(1 — 3m).

In the following theorem, we find a relation between the Wiener polynomials and
the singly and doubly vertex-weighted Wiener polynomials of S(G) and G.

Theorem 3.12.

P,,(S(G);x) — %PDU(G;f) = 4[zP,(S(G); z) — P,(G; x?)] (3.9)
— 42®[Py(S(G); ) — Po(G; 2%)).
Proof. Using Eq. (3.8) and the proof of Theorem 3.10, we have
Pu(S(G);z) = %PM(G;:UQ) + 42? Py (L(G); 2?)
(3.10)

T Z Z [ds<c)(u)xz]xds<c>(u,e)+2_

uwEV(G) e€E(G)
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By Lemma 2.1 and Lemma 2.3, the last polynomial in Eq. (3.10) can also be computed
as follows:

Z Z [ds(c)(u) x 2Jzts@ e +2

u€V(G) e€E(G)

=2 Z Z dS(G -|-2] dse)(u,e)+2 _ 4 Z Z xds(G)(ue)+2

ueV(G) eeE(G) u€V(G) ecE(G)

= [4:5P1,(S(G); x)—2 Z [ds(c)(u) + dS(G)(v)]atds<G>(“’“)+2
{u,v}CV(G)

—9 Z 2+ Q]xds<c>(e,f)+2]
{e.fICE(G)

_ |:4SC2P0(S(G);SC) _4 Z s (wr)+2 _y Z Ids(c)(e’f)+2]
{uv}CV(@) {e.f}CE(G)

— {45631(5(6'); x)—2 Z [de(u) + dG('L))]x2dG(“7”)+2
{u,v}CV(G)

-8 Z :L»QdL(G)(e»f)""Q:l

{e,f}CE(G)
_ {4332P0(S(G);x) _4 Z dec(u,v)—‘rZ —4 Z xQdL(G)(e,f)J,-Q
{uv}CV(G) {e,f}CE(G)
= [4va(S(G);x) — 4P, (G;2*) — 822 Py(L ,acQ)]

— [42°Py(S(G); ) — 42° Py(G; 2°) — 4x2P0(L(G),x )]
= 4[2P,(S(G);z) — Py(G;2%)] — 42°[Po(S(G); 2) — Po(Gs2?)]
- 4$2P0( (G)a 1'2)
Now, by Eq. (3.10), we can get the desired result. O
From Eq. (3.9) we have the following relation for vertex-weighted Wiener numbers.

Corollary 3.13.
Woo(S(G)) — 2Wy(G) = AW, (S(G)) — 8W,(G) — AW (S(G)) + 8W(G).

The following theorem is similar to Theorem 3.12 and gives a relationship between
the Wiener polynomials and the singly and doubly vertex-weighted Wiener polynomials
of R(G) and G.

Theorem 3.14.
Pyu(R(G); ) — 4Py (G; ) = 42 [P, (R(G); 2) — 2P, (G; z)]

) (3.11)
— 42°[Py(R(G); x) — Po(G; x)).
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Proof. Using the same argument as in the proof of Theorem 3.12, we can get Eq. (3.11).
O

By taking the first derivative of Eq. (3.11) at = 1, we easily obtain the following
result.

Corollary 3.15.
W (R(G)) — AW, (G) = AW, (R(G)) — 8W,,(G) — 4W (R(G)) + 4W (G).

In the next theorem, we prove a relation among doubly vertex-weighted Wiener
polynomials of L(G), Q(G), T(G), and G.

Theorem 3.16.

Pon(Q(G):2) = (3 — 2)Pon (G ) + %PW(T(G); ) + %PUU(L(G); 7)
(3.12)

+ 22 P, (L(G); ) + 20 Py (L(G); ).

Proof. By definition of the doubly vertex-weighted Wiener polynomial and Lemma 2.1,
the polynomial P,,(Q(G);z) can be obtained by adding three polynomials as follows:

Pu@Grio)= Y [dow)(w)dgc)(v)]ate@ )+
{u,v}CV(G)

+ Z [do(a)(e)dga) (f)]atew (T2
{e,fYCE(G)

+ > ldoe) (wdge)(e)latew (e +2,
ueV (G) e€E(G)

The first polynomial is computed as follows:
Z [dQ(G)(U)dQ(G)(v)]dem)(u7v)+2
{uw}CV(G)

= Z [da(u)dg(v)]zde @I+ = 2P, (G x).
{uv}CV(G)
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The summation of the second and third polynomials is equal to

> ldo(e)dge (f)latee D+
{e.,f}CE(G)

M Z Z [dq(e) (u)dga)(e)lz dq(a) (w,e)+2
u€V(G) e€E(G)
1

2 Z [(dre)(e) +2)(dre)(f) + 2)]zdr@ ()2
{e./}CE(G)
1
to S ldro)(e)dre(atTe N

{e.f}CE(G)
+* DY e (Wdr)(e)atre I+

ueV(G) e€E(G)

= BPW(L(G); ) + 20P,(L(G); z) + 22° Py (L(G); x)}

1 1 w
{u,v}CV(G)

= BPM(L(G); @) + 22P,(L(G); x) + 20 Po(L(G); x)}

+{1PUU(T(G);33)—; > [2dg(u)><2d(;(v)]xdc(“*”)+2]

2
{u,0}CV(G)
1
= 5PM,(L(G); z) 4 22P,(L(G); ) + 22% Py(L(G); x)
1
+ inU(T(G); x) — 2P, (G; x).

Now, Eq. (3.12) is obtained by adding the above polynomials and simplifying the
resulting expression. O

From Eq. (3.12), we get the following relationship among the considered
vertex-weighted Wiener numbers.

Corollary 3.17.

2W0u (Q(G)) = Wi (T(G)) = 2Wo(G) + Wy (L(G)) + 4W, (L(G))
+4W (L(G)) — M1(G) + 4m?.
Finally, by combining Egs. (3.7) and (3.12), we can get an interesting relation

among doubly vertex-weighted Wiener polynomials of the graph G and all subdivision
operators.
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Corollary 3.18.

1 2\ — — 2 '$2
—5 1207 Pu(S(G);2) = Pou(R(G); %)) = 2o — 22 + 1) P (G 27) (3.13)

—22P (Q(G); #2) + 2Py (T(G); 22) + 2Py (L(G); 2%) + 42 P, (L(G); 2%).

Proof. By Eq. (3.12),

23:4P0(L(G);x2) = PM,(Q<G);.Z'2) — (x2 — 2) P, (G z?) — %PDU(T(G);Z’Z)

1
— 5PM(L(G);gﬂ) — 222 P, (L(G); x?).
Now, the result follows by eliminating the term Py(L(G);2?) in the above relation
and Eq. (3.7). O

The corresponding relationship for vertex-weighted Wiener numbers is given in
the following corollary.

Corollary 3.19.

WU’U(S(G)) - W’UU(R(G)) = ZWU’U(Q(G)) - W’UU(T(G)) - WU’U(L(G)) - 4W’U (L(G))
+ M;i(G) —2m(5m — 1).
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