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1. INTRODUCTION

In this paper, we are concerned with connected finite graphs without loops or multiple
edges. Let G be such a graph with the vertex set V (G) and the edge set E(G). The
shortest-path distance between vertices u and v in G is denoted by dG(u, v). The degree
of a vertex u in G is denoted by dG(u). If there is no ambiguity on G, we omit the
subscript G in dG(u, v) and dG(u). We denote by |S| the cardinality of a set S.

In theoretical chemistry, the physico-chemical properties of chemical compounds
are often modeled by means of molecular-graph-based structure-descriptors, which are
also referred to as topological indices [9, 26]. The Wiener number (or Wiener index),
introduced by Wiener in 1947 [27], is the first reported distance-based topological index.
This index was used for modeling the shape of organic molecules and for calculating
several of their physico-chemical properties. The Wiener number of G is defined as

W (G) =
∑

{u,v}⊆V (G)

d(u, v),

where the summation is taken over all unordered pairs of vertices u and v. Details on
the Wiener index, and its theory and applications can be found in [7,8,10,12,14,20,24].
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The (unweighted) Wiener polynomial of G is defined as

P0(G; x) =
∑

{u,v}⊆V (G)

xd(u,v),

with x a dummy variable. This coincides with definitions of Hosoya [17] and Sagan
et al. [23]. Some authors prefer the name Hosoya polynomial.

A corresponding singly vertex-weighted Wiener polynomial of G is defined as [19]

Pv(G; x) = 1
2

∑
{u,v}⊆V (G)

[d(u) + d(v)]xd(u,v)+1.

A doubly vertex-weighted Wiener polynomial of G is defined as [19]

Pvv(G; x) =
∑

{u,v}⊆V (G)

[d(u)d(v)]xd(u,v)+2.

The following relationship between the Wiener number and the Wiener polynomial of
G was noted in [17]:

W (G) = P ′0(G; 1).

The corresponding generalizations for the singly and doubly vertex-weighted cases
were given in [19]:

Wv(G) =
[

1
x

Pv(G; x)
]′

x=1
, Wvv(G) =

[
1
x2 Pvv(G; x)

]′
x=1

.

Here, Wv(G) denotes the singly vertex-weighted Wiener number of G,

Wv(G) = 1
2

∑
{u,v}⊆V (G)

[d(u) + d(v)]d(u, v).

Also, Wvv(G) denotes the doubly vertex-weighted Wiener number of G,

Wvv(G) =
∑

{u,v}⊆V (G)

[d(u)d(v)]d(u, v).

The Zagreb indices were introduced by Gutman and Trinajstić in 1972 [16]. The
first Zagreb index M1(G) of G is defined as

M1(G) =
∑

u∈V (G)

d(u)2.

It can also be expressed as a sum over edges of G,

M1(G) =
∑

uv∈E(G)

[d(u) + d(v)].



Vertex-weighted Wiener polynomials of subdivision-related graphs 7

The second Zagreb index M2(G) of G is defined as

M2(G) =
∑

uv∈E(G)

d(u)d(v).

Obviously, the Zagreb indices can be viewed as the contributions of pairs of adjacent
vertices to vertex-weighted Wiener numbers. We refer the reader to [2, 4, 13, 15, 21, 22],
for more information about these indices.

It is well-known that many graphs of general, and in particular of chemical interest,
arise from simpler graphs via various graph operators. It is, hence, important to
understand how certain invariants of a graph change under graph operators. In this
paper, we show how the singly and doubly vertex-weighted Wiener polynomials change
with subdivision operators, and apply our results to singly and doubly vertex-weighted
Wiener numbers. Readers interested in more information on computing topological
indices and polynomials of graph operations are referred to [1, 3, 5, 6, 11,18,25,28].

2. DEFINITIONS AND PRELIMINARIES

In this section, we recall the definitions of subdivision related graphs from the reference
[28], and state some preliminary results about them.

Suppose G = (V (G), E(G)) is a connected graph with the vertex set V (G) and the
edge set E(G). Let V (e) denote the set of two end vertices of an edge e of G. Related
to the graph G, the line graph L(G), the subdivision graph S(G), and the total graph
T (G) are defined as follows:

– Line graph: L(G) is the graph whose vertices correspond to the edges of G with
two vertices being adjacent if and only if the corresponding edges in G have a
vertex in common; see Figure 1(b).

– Subdivision graph: S(G) is the graph obtained from G by replacing each of its
edges by a path of length two, or equivalently, by inserting an additional vertex of
degree 2 into each edge of G; see Figure 1(c).

– Total graph: T (G) is the graph whose vertex set is V (G)∪E(G), with two vertices
of T (G) being adjacent if and only if the corresponding elements of G are adjacent
or incident; see Figure 1(d).

Two extra subdivision operators named R(G) and Q(G) are defined as follows:

– R(G) is the graph obtained from G by adding a new vertex corresponding to
each edge of G, and by joining each new vertex to the end vertices of the edge
corresponding to it; see Figure 2(a).

– Q(G) is the graph obtained from G by inserting a new vertex into each edge of G,
and by joining with edges those pairs of new vertices which lie on adjacent edges
of G; see Figure 2(b).
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(a) A graph G (b) The line graph L(G)

(c) The subdivision-graph S(G) (d) The total graph T (G)

Fig. 1. A graph G and the subdivision operators L(G), S(G), and T (G)

(a) The graph R(G) (b) The graph Q(G)

Fig. 2. The two additional subdivision operators R(G) and Q(G)
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Now, consider the sets EE(G) and EV (G) for the graph G = (V (G), E(G)) as
follows:

EE(G) = {ee′|e, e′ ∈ E(G), |V (e) ∩ V (e′)| = 1}, EV (G) = {ev|e ∈ E(G), v ∈ V (e)}.

It is easy to see that

|EE(G)| =
∑

u∈V (G)

(
d(u)

2

)
= 1

2M1(G)− |E(G)| , |EV (G)| = 2 |E(G)| .

Based on the definitions of these sets, we may write the subdivision-related graphs as

L(G) = (E(G), EE(G)),
S(G) = (V (G) ∪ E(G), EV (G)),
T (G) = (V (G) ∪ E(G), E(G) ∪ EE(G) ∪ EV (G)),
R(G) = (V (G) ∪ E(G), E(G) ∪ EV (G)),
Q(G) = (V (G) ∪ E(G), EE(G) ∪ EV (G)).

Obviously,
|V (L(G))| = |E(G)| ,

|V (S(G))| = |V (T (G))| = |V (R(G))| = |V (Q(G))| = |V (G)|+ |E(G)| .

Also,

|E(S(G))| = 2 |E(G)| , |E(R(G))| = 3 |E(G)| , |E(T (G))| = 1
2M1(G) + 2 |E(G)| ,

|E(Q(G))| = 1
2M1(G) + |E(G)| , |E(L(G))| = 1

2M1(G)− |E(G)| .

In the following lemma, we find the relationship among the degrees of vertices in
subdivision-related graphs.

Lemma 2.1. For any vertex v ∈ V (G),

dT (G)(v) = dR(G)(v) = 2dS(G)(v) = 2dQ(G)(v) = 2dG(v),

and for any edge e = uv ∈ E(G),

dS(G)(e) = dR(G)(e) = 2, dT (G)(e) = dQ(G)(e) = dL(G)(e) + 2 = dG(u) + dG(v).

Proof. By definition of the subdivision-related graphs, the proof is obvious.

We define the third Zagreb index M3(G) of the graph G = (V (G), E(G)) as follows:

M3(G) =
∑

u∈V (G)

d(u)3 =
∑

uv∈E(G)

[d(u)2 + d(v)2].

Now, we use Lemma 2.1 to determine the first Zagreb index of subdivision-related
graphs.
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Theorem 2.2.

(i) M1(L(G)) = M3(G) + 2M2(G)− 4M1(G) + 4 |E(G)|,
(ii) M1(S(G)) = M1(G) + 4 |E(G)|,
(iii) M1(T (G)) = M3(G) + 2M2(G) + 4M1(G),
(iv) M1(R(G)) = 4M1(G) + 4 |E(G)|,
(v) M1(Q(G)) = M3(G) + 2M2(G) + M1(G).

Proof. (i) By definition of the line graph L(G) and Lemma 2.1,

M1(L(G)) =
∑

e∈V (L(G))

dL(G)(e)2 =
∑

uv∈E(G)

[dG(u) + dG(v)− 2]2

=
∑

uv∈E(G)

[dG(u)2 + dG(v)2] + 4 |E(G)|+ 2
∑

uv∈E(G)

dG(u)dG(v)

− 4
∑

uv∈E(G)

[dG(u) + dG(v)]

= M3(G) + 2M2(G)− 4M1(G) + 4 |E(G)| .

(ii) By definition of the subdivision graph S(G) and Lemma 2.1,

M1(S(G)) =
∑

u∈V (G)

dG(u)2 +
∑

e∈E(G)

22 = M1(G) + 4 |E(G)| .

(iii) By definition of the total graph T (G) and Lemma 2.1,

M1(T (G)) =
∑

u∈V (G)

(2dG(u))2 +
∑

uv∈E(G)

[dG(u) + dG(v)]2

= 4
∑

u∈V (G)

dG(u)2 +
∑

uv∈E(G)

[dG(u)2 + dG(v)2] + 2
∑

uv∈E(G)

dG(u)dG(v)

= M3(G) + 2M2(G) + 4M1(G).

(iv) By definition of R(G) and Lemma 2.1,

M1(R(G)) =
∑

u∈V (G)

(2dG(u))2 +
∑

e∈E(G)

22 = 4M1(G) + 4 |E(G)| .

(v) By definition of Q(G) and Lemma 2.1,

M1(Q(G)) =
∑

u∈V (G)

dG(u)2 +
∑

uv∈E(G)

[dG(u) + dG(v)]2

= M1(G) +
∑

uv∈E(G)

[dG(u)2 + dG(v)2] + 2
∑

uv∈E(G)

dG(u)dG(v)

= M3(G) + 2M2(G) + M1(G).
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In the following lemma, we summarize the relations among distances between
vertices in subdivision-related graphs.

Lemma 2.3 ([28]).

(i) For any two vertices v, v′ ∈ V (G),

1
2dS(G)(v, v′) = dT (G)(v, v′) = dR(G)(v, v′) = dQ(G)(v, v′)− 1 = dG(v, v′).

(ii) For any two edges e, e′ ∈ E(G),

1
2dS(G)(e, e′) = dT (G)(e, e′) = dR(G)(e, e′)− 1 = dQ(G)(e, e′) = dL(G)(e, e′).

(iii) For any vertex v ∈ V (G) and edge e ∈ E(G),

1
2(dS(G)(e, v) + 1) = dT (G)(e, v) = dR(G)(e, v) = dQ(G)(e, v).

3. MAIN RESULTS

In this section, we prove several interesting relationships among vertex-weighted Wiener
polynomials of subdivision operators. Then, by taking the first derivative of these
relations at x = 1, we get the corresponding relationships for vertex-weighted Wiener
numbers. Throughout this section, let G be a simple connected graph with n vertices
and m edges. We start this section with the following simple lemma. Results follow
easily from the definitions, so their proofs are omitted.

Lemma 3.1.

(i) P0(G; 1) =
(

n
2
)
,

(ii) Pv(G; 1) = m(n− 1),
(iii) Pvv(G; 1) = 2m2 − 1

2 M1(G),
(iv) P ′v(G; 1) = Wv(G) + m(n− 1),
(v) P ′vv(G; 1) = Wvv(G) + 4m2 −M1(G).

Theorem 3.2.

Pv(S(G); x) =
( 1

x
− 1

x2

)
Pv(G; x2) + 1

2x2 Pv(R(G); x2)− 1
2P0(G; x2)

+ 1
2P0(T (G); x2) +

(
2x− x2 − 1

2

)
P0(L(G); x2).

(3.1)
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Proof. By definition of the singly vertex-weighted Wiener polynomial and Lemma 2.1,
the polynomial Pv(S(G); x) can be obtained by adding three polynomials as follows:

Pv(S(G); x) = 1
2

∑
{u,v}⊆V (G)

[dS(G)(u) + dS(G)(v)]xdS(G)(u,v)+1

+ 1
2

∑
{e,f}⊆E(G)

[2 + 2]xdS(G)(e,f)+1

+ 1
2
∑

u∈V (G)

∑
e∈E(G)

[dS(G)(u) + 2]xdS(G)(u,e)+1.

(3.2)

Now, we use Lemma 2.1 and Lemma 2.3 to compute each polynomial, separately.
The first polynomial is computed as follows:

1
2

∑
{u,v}⊆V (G)

[dS(G)(u) + dS(G)(v)]xdS(G)(u,v)+1

= 1
2

∑
{u,v}⊆V (G)

[dG(u) + dG(v)]x2dG(u,v)+1 = 1
x

Pv(G; x2).

The second polynomial is computed as follows:

2
∑

{e,f}⊆E(G)

xdS(G)(e,f)+1 = 2
∑

{e,f}⊆E(G)

x2dL(G)(e,f)+1 = 2xP0(L(G); x2).

The third polynomial is computed as follows:

1
2
∑

u∈V (G)

∑
e∈E(G)

[dS(G)(u) + 2]xdS(G)(u,e)+1 = 1
4
∑

u∈V (G)

∑
e∈E(G)

[dR(G)(u) + 4]x2dR(G)(u,e)

= 1
2
∑

u∈V (G)

∑
e∈E(G)

x2dT (G)(u,e) + 1
4
∑

u∈V (G)

∑
e∈E(G)

[dR(G)(u) + 2]x2dR(G)(u,e)

=
[1

2P0(T (G); x2)− 1
2

∑
{u,v}⊆V (G)

x2dT (G)(u,v) − 1
2

∑
{e,f}⊆E(G)

x2dT (G)(e,f)
]

+
[ 1

2x2 Pv(R(G); x2)− 1
4

∑
{u,v}⊆V (G)

[dR(G)(u) + dR(G)(v)]x2dR(G)(u,v)

− 1
4

∑
{e,f}⊆E(G)

[2 + 2]x2dR(G)(e,f)
]
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=
[1

2P0(T (G); x2)− 1
2

∑
{u,v}⊆V (G)

x2dG(u,v) − 1
2

∑
{e,f}⊆E(G)

x2dL(G)(e,f)
]

+
[ 1

2x2 Pv(R(G); x2)− 1
4

∑
{u,v}⊆V (G)

[2dG(u) + 2dG(v)]x2dG(u,v)

−
∑

{e,f}⊆E(G)

x2dL(G)(e,f)+2
]

=
[1

2P0(T (G); x2)− 1
2P0(G; x2)− 1

2P0(L(G); x2)
]

+
[ 1

2x2 Pv(R(G); x2)− 1
x2 Pv(G; x2)− x2P0(L(G); x2)

]
= 1

2x2 Pv(R(G); x2)− 1
x2 Pv(G; x2)− 1

2P0(G; x2) + 1
2P0(T (G); x2)

−
(

x2 + 1
2

)
P0(L(G); x2).

Now, Eq. (3.1) is obtained by adding the above three polynomials and simplifying
the resulting expression.

By taking the first derivative from Eq. (3.1) with respect to x, and then by
substituting x = 1, we can prove the following corollary. We also use Lemma 3.1 to
simplify the relation.

Corollary 3.3.

Wv(S(G)) = Wv(R(G)) + W (T (G)) + W (L(G))−W (G)−m(n + 2m− 1).

By rearranging the terms in the proof of Theorem 3.2, we can obtain an alternative
expression for Pv(S(G); x).

Theorem 3.4.

Pv(S(G); x) =
(

1 + 1
x
− 2

x2

)
Pv(G; x2)− 1

x2 Pv(Q(G); x2) + 1
x2 Pv(T (G); x2)

− P0(G; x2) + P0(T (G); x2) + (2x− 1)P0(L(G); x2).
(3.3)

Proof. Using Eq. (3.2) and the proof of Theorem 3.2, we have

Pv(S(G); x) = 1
x

Pv(G; x2) + 2xP0(L(G); x2)

+ 1
2
∑

u∈V (G)

∑
e∈E(G)

[dS(G)(u) + 2]xdS(G)(u,e)+1.
(3.4)
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By Lemma 2.1 and Lemma 2.3, the last polynomial in Eq. (3.4) can also be computed
as follows:

1
2
∑

u∈V (G)

∑
e∈E(G)

[dS(G)(u) + 2]xdS(G)(u,e)+1

= 1
2
∑

u∈V (G)

∑
e∈E(G)

[dT (G)(u)− dQ(G)(u)]xdS(G)(u,e)+1 +
∑

u∈V (G)

∑
e∈E(G)

xdS(G)(u,e)+1

= 1
2
∑

u∈V (G)

∑
e∈E(G)

[dT (G)(u) + dT (G)(e)]x2dT (G)(u,e)

− 1
2
∑

u∈V (G)

∑
e∈E(G)

[dQ(G)(u) + dQ(G)(e)]x2dQ(G)(u,e) +
∑

u∈V (G)

∑
e∈E(G)

x2dT (G)(u,e)

=
[ 1

x2 Pv(T (G); x2)− 1
2

∑
{u,v}⊆V (G)

[dT (G)(u) + dT (G)(v)]x2dT (G)(u,v)

− 1
2

∑
{e,f}⊆E(G)

[dT (G)(e) + dT (G)(f)]x2dT (G)(e,f)
]

−
[ 1

x2 Pv(Q(G); x2)− 1
2

∑
{u,v}⊆V (G)

[dQ(G)(u) + dQ(G)(v)]x2dQ(G)(u,v)

− 1
2

∑
{e,f}⊆E(G)

[dQ(G)(e) + dQ(G)(f)]x2dQ(G)(e,f)
]

+
[
P0(T (G); x2)−

∑
{u,v}⊆V (G)

x2dT (G)(u,v) −
∑

{e,f}⊆E(G)

x2dT (G)(e,f)
]

=
[ 1

x2 Pv(T (G); x2)−
∑

{u,v}⊆V (G)

[dG(u) + dG(v)]x2dG(u,v)
]

−
[ 1

x2 Pv(Q(G); x2)− 1
2

∑
{u,v}⊆V (G)

[dG(u) + dG(v)]x2(dG(u,v)+1)
]

+
[
P0(T (G); x2)−

∑
{u,v}⊆V (G)

x2dG(u,v) −
∑

{e,f}⊆E(G)

x2dL(G)(e,f)
]

=
(

1− 2
x2

)
Pv(G; x2)− 1

x2 Pv(Q(G); x2) + 1
x2 Pv(T (G); x2)− P0(G; x2)

+ P0(T (G); x2)− P0(L(G); x2).

Now, using Eq. (3.4), we can get the desired result.
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By taking the first derivative from Eq. (3.3) with respect to x, and then by
substituting x = 1, we easily arrive at:

Corollary 3.5.

Wv(S(G)) = 2Wv(T (G))− 2Wv(Q(G)) + 2W (T (G)) + 2W (L(G))− 2W (G)
+ m(n−m− 2).

By eliminating the term Pv(S(G); x) in Eq. (3.1) and Eq. (3.3), we can obtain a
formula for Pv(R(G); x) similar to Eq. (3.3).

Corollary 3.6.

Pv(R(G); x) = 2(x− 1)Pv(G; x)− 2Pv(Q(G); x) + 2Pv(T (G); x)− xP0(G; x)
+ xP0(T (G); x) + (2x2 − x)P0(L(G); x).

(3.5)

From Eq. (3.5), we obtain the following relationship among vertex-weighted Wiener
numbers.

Corollary 3.7.

Wv(R(G)) = 2Wv(T (G))− 2Wv(Q(G)) + W (T (G)) + W (L(G))−W (G)
+ m(2n + m− 3).

By combining Eqs. (3.3) and (3.5), we get a relation among the singly
vertex-weighted Wiener polynomials of S(G), R(G), Q(G), T (G), and G.

Corollary 3.8.

x2Pv(S(G); x) + (x2 − x)Pv(G; x2)− Pv(Q(G); x2)
+ Pv(T (G); x2)− Pv(R(G); x2) + (2x4 − 2x3)P0(L(G); x2) = 0.

(3.6)

Proof. By Eq. (3.5),

x2[P0(T (G); x2)− P0(G; x2)] = Pv(R(G); x2)− 2(x2 − 1)Pv(G; x2) + 2Pv(Q(G); x2)
− 2Pv(T (G); x2)− (2x4 − x2)P0(L(G); x2).

Also, by multiplying the Eq. (3.3) by x2, we have

x2Pv(S(G); x) = (x2 + x− 2)Pv(G; x2)− Pv(Q(G); x2) + Pv(T (G); x2)
+ x2(2x− 1)P0(L(G); x2) + x2[P0(T (G); x2)− P0(G; x2)].

Now, by eliminating the term x2[P0(T (G); x2)− P0(G; x2)] between the above two
equations, we can get the desired result.

From Eq. (3.6) we obtain the following relation for the vertex-weighted Wiener
numbers of four subdivisions.
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Corollary 3.9.

2Wv(Q(G)) + 2Wv(R(G))− 2Wv(T (G))−Wv(S(G)) = m(3n + 3m− 4).

We notice that the result does not depend neither on W (G) nor on Wv(G).
Now, we turn our attention toward doubly vertex-weighted Wiener polynomials.

In the next theorem, we obtain a relation among doubly vertex-weighted Wiener
polynomials of S(G), R(G), and G.

Theorem 3.10.

Pvv(S(G); x) =
( 1

x2 −
2
x3

)
Pvv(G; x2) + 1

2x3 Pvv(R(G); x2)

+ (4x2 − 2x3)P0(L(G); x2).
(3.7)

Proof. By definition of the doubly vertex-weighted Wiener polynomial and Lemma 2.1,
the polynomial Pvv(S(G); x) can be obtained by adding three polynomials as follows:

Pvv(S(G); x) =
∑

{u,v}⊆V (G)

[dS(G)(u)dS(G)(v)]xdS(G)(u,v)+2

+
∑

{e,f}⊆E(G)

[2× 2]xdS(G)(e,f)+2

+
∑

u∈V (G)

∑
e∈E(G)

[dS(G)(u)× 2]xdS(G)(u,e)+2.

(3.8)

Now, we use Lemma 2.1 and Lemma 2.3 to compute these polynomials.
The first polynomial is computed as follows:

∑
{u,v}⊆V (G)

[dS(G)(u)dS(G)(v)]xdS(G)(u,v)+2

=
∑

{u,v}⊆V (G)

[dG(u)dG(v)]x2dG(u,v)+2 = 1
x2 Pvv(G; x2).

The second polynomial is computed as follows:

4
∑

{e,f}⊆E(G)

xdS(G)(e,f)+2 = 4
∑

{e,f}⊆E(G)

x2dL(G)(e,f)+2 = 4x2P0(L(G); x2).
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The third polynomial is computed as follows:∑
u∈V (G)

∑
e∈E(G)

[dS(G)(u)× 2]xdS(G)(u,e)+2

= 1
2
∑

u∈V (G)

∑
e∈E(G)

[dR(G)(u)× 2]x2dR(G)(u,e)+1

= 1
2x3 Pvv(R(G); x2)− 1

2
∑

{u,v}⊆V (G)

[dR(G)(u)dR(G)(v)]x2dR(G)(u,v)+1

− 1
2

∑
{e,f}⊆E(G)

[2× 2]x2dR(G)(e,f)+1

= 1
2x3 Pvv(R(G); x2)− 1

2
∑

{u,v}⊆V (G)

[2dG(u)× 2dG(v)]x2dG(u,v)+1

− 2
∑

{e,f}⊆E(G)

x2dL(G)(e,f)+3

= 1
2x3 Pvv(R(G); x2)− 2

x3 Pvv(G; x2)− 2x3P0(L(G); x2).

Now, Eq. (3.7) is obtained by adding the above three polynomials, and simplifying
the resulting expression.

By taking the first derivative from Eq. (3.7) with respect to x, and then by
substituting x = 1, we can prove the following corollary. We also use Theorem 2.2 and
Lemma 3.1, to simplify the relation.

Corollary 3.11.

Wvv(S(G)) = Wvv(R(G))− 2Wvv(G) + 4W (L(G)) + 2m(1− 3m).

In the following theorem, we find a relation between the Wiener polynomials and
the singly and doubly vertex-weighted Wiener polynomials of S(G) and G.

Theorem 3.12.

Pvv(S(G); x)− 1
x2 Pvv(G; x2) = 4[xPv(S(G); x)− Pv(G; x2)]

− 4x2[P0(S(G); x)− P0(G; x2)].
(3.9)

Proof. Using Eq. (3.8) and the proof of Theorem 3.10, we have

Pvv(S(G); x) = 1
x2 Pvv(G; x2) + 4x2P0(L(G); x2)

+
∑

u∈V (G)

∑
e∈E(G)

[dS(G)(u)× 2]xdS(G)(u,e)+2.
(3.10)
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By Lemma 2.1 and Lemma 2.3, the last polynomial in Eq. (3.10) can also be computed
as follows:∑

u∈V (G)

∑
e∈E(G)

[dS(G)(u)× 2]xdS(G)(u,e)+2

= 2
∑

u∈V (G)

∑
e∈E(G)

[dS(G)(u) + 2]xdS(G)(u,e)+2 − 4
∑

u∈V (G)

∑
e∈E(G)

xdS(G)(u,e)+2

=
[
4xPv(S(G); x)− 2

∑
{u,v}⊆V (G)

[dS(G)(u) + dS(G)(v)]xdS(G)(u,v)+2

− 2
∑

{e,f}⊆E(G)

[2 + 2]xdS(G)(e,f)+2
]

−
[
4x2P0(S(G); x)− 4

∑
{u,v}⊆V (G)

xdS(G)(u,v)+2 − 4
∑

{e,f}⊆E(G)

xdS(G)(e,f)+2
]

=
[
4xPv(S(G); x)− 2

∑
{u,v}⊆V (G)

[dG(u) + dG(v)]x2dG(u,v)+2

− 8
∑

{e,f}⊆E(G)

x2dL(G)(e,f)+2
]

−
[
4x2P0(S(G); x)− 4

∑
{u,v}⊆V (G)

x2dG(u,v)+2 − 4
∑

{e,f}⊆E(G)

x2dL(G)(e,f)+2
]

=
[
4xPv(S(G); x)− 4Pv(G; x2)− 8x2P0(L(G); x2)

]
−
[
4x2P0(S(G); x)− 4x2P0(G; x2)− 4x2P0(L(G); x2)

]
= 4[xPv(S(G); x)− Pv(G; x2)]− 4x2[P0(S(G); x)− P0(G; x2)]
− 4x2P0(L(G); x2).

Now, by Eq. (3.10), we can get the desired result.

From Eq. (3.9) we have the following relation for vertex-weighted Wiener numbers.

Corollary 3.13.

Wvv(S(G))− 2Wvv(G) = 4Wv(S(G))− 8Wv(G)− 4W (S(G)) + 8W (G).

The following theorem is similar to Theorem 3.12 and gives a relationship between
the Wiener polynomials and the singly and doubly vertex-weighted Wiener polynomials
of R(G) and G.

Theorem 3.14.

Pvv(R(G); x)− 4Pvv(G; x) = 4x[Pv(R(G); x)− 2Pv(G; x)]
− 4x2[P0(R(G); x)− P0(G; x)].

(3.11)
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Proof. Using the same argument as in the proof of Theorem 3.12, we can get Eq. (3.11).

By taking the first derivative of Eq. (3.11) at x = 1, we easily obtain the following
result.

Corollary 3.15.

Wvv(R(G))− 4Wvv(G) = 4Wv(R(G))− 8Wv(G)− 4W (R(G)) + 4W (G).

In the next theorem, we prove a relation among doubly vertex-weighted Wiener
polynomials of L(G), Q(G), T (G), and G.

Theorem 3.16.

Pvv(Q(G); x) = (x− 2)Pvv(G; x) + 1
2Pvv(T (G); x) + 1

2Pvv(L(G); x)

+ 2xPv(L(G); x) + 2x2P0(L(G); x).
(3.12)

Proof. By definition of the doubly vertex-weighted Wiener polynomial and Lemma 2.1,
the polynomial Pvv(Q(G); x) can be obtained by adding three polynomials as follows:

Pvv(Q(G); x) =
∑

{u,v}⊆V (G)

[dQ(G)(u)dQ(G)(v)]xdQ(G)(u,v)+2

+
∑

{e,f}⊆E(G)

[dQ(G)(e)dQ(G)(f)]xdQ(G)(e,f)+2

+
∑

u∈V (G)

∑
e∈E(G)

[dQ(G)(u)dQ(G)(e)]xdQ(G)(u,e)+2.

The first polynomial is computed as follows:

∑
{u,v}⊆V (G)

[dQ(G)(u)dQ(G)(v)]xdQ(G)(u,v)+2

=
∑

{u,v}⊆V (G)

[dG(u)dG(v)]xdG(u,v)+3 = xPvv(G; x).
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The summation of the second and third polynomials is equal to∑
{e,f}⊆E(G)

[dQ(G)(e)dQ(G)(f)]xdQ(G)(e,f)+2

+
∑

u∈V (G)

∑
e∈E(G)

[dQ(G)(u)dQ(G)(e)]xdQ(G)(u,e)+2

= 1
2

∑
{e,f}⊆E(G)

[(dL(G)(e) + 2)(dL(G)(f) + 2)]xdL(G)(e,f)+2

+ 1
2

∑
{e,f}⊆E(G)

[dT (G)(e)dT (G)(f)]xdT (G)(e,f)+2

+ 1
2
∑

u∈V (G)

∑
e∈E(G)

[dT (G)(u)dT (G)(e)]xdT (G)(u,e)+2

=
[

1
2Pvv(L(G); x) + 2xPv(L(G); x) + 2x2P0(L(G); x)

]
+
[

1
2Pvv(T (G); x)− 1

2
∑

{u,v}⊆V (G)

[dT (G)(u)dT (G)(v)]xdT (G)(u,v)+2
]

=
[

1
2Pvv(L(G); x) + 2xPv(L(G); x) + 2x2P0(L(G); x)

]
+
[

1
2Pvv(T (G); x)− 1

2
∑

{u,v}⊆V (G)

[2dG(u)× 2dG(v)]xdG(u,v)+2
]

= 1
2Pvv(L(G); x) + 2xPv(L(G); x) + 2x2P0(L(G); x)

+ 1
2Pvv(T (G); x)− 2Pvv(G; x).

Now, Eq. (3.12) is obtained by adding the above polynomials and simplifying the
resulting expression.

From Eq. (3.12), we get the following relationship among the considered
vertex-weighted Wiener numbers.

Corollary 3.17.

2Wvv(Q(G)) = Wvv(T (G))− 2Wvv(G) + Wvv(L(G)) + 4Wv(L(G))
+ 4W (L(G))−M1(G) + 4m2.

Finally, by combining Eqs. (3.7) and (3.12), we can get an interesting relation
among doubly vertex-weighted Wiener polynomials of the graph G and all subdivision
operators.
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Corollary 3.18.

1
x− 2 [2x3Pvv(S(G); x)− Pvv(R(G); x2)] = 2(x3 − 2x + 1)Pvv(G; x2)

− 2xPvv(Q(G); x2) + xPvv(T (G); x2) + xPvv(L(G); x2) + 4x3Pv(L(G); x2).
(3.13)

Proof. By Eq. (3.12),

2x4P0(L(G); x2) = Pvv(Q(G); x2)− (x2 − 2)Pvv(G; x2)− 1
2Pvv(T (G); x2)

− 1
2Pvv(L(G); x2)− 2x2Pv(L(G); x2).

Now, the result follows by eliminating the term P0(L(G); x2) in the above relation
and Eq. (3.7).

The corresponding relationship for vertex-weighted Wiener numbers is given in
the following corollary.

Corollary 3.19.

Wvv(S(G))−Wvv(R(G)) = 2Wvv(Q(G))−Wvv(T (G))−Wvv(L(G))− 4Wv(L(G))
+ M1(G)− 2m(5m− 1).
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