Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
TiO2 thin films were deposited by the energy filtrating magnetron sputtering (EFMS) technique and the traditional direct current magnetron sputtering (DMS) technique. The influence of the filtering electrode mesh number on the structure and optical properties of TiO2 thin films was investigated. The structure, surface morphology and optical properties were characterized by XRD, SEM and ellipsometric spectroscopy, respectively. Results show that the TiO2 thin films deposited by the DMS and EFMS techniques at the same deposition parameters are composed of the anatase phase exclusively. TiO2 thin films deposited at lower deposition rate by the EFMS technique have lower crystallinity, smaller particle size and smoother surface. With increasing the mesh number, the refractive index, extinction coefficient and optical band gap are larger.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1--7
Opis fizyczny
Bibliogr. 28 poz., tab., rys.
Twórcy
autor
- School of Mathematics and Physics, Henan Urban Construction University, Pingdingshan 467036, China
autor
- Departments of Mathematics and Information Science, North China University of Water Resources and Electric Power Zhengzhou 450045, China
autor
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
autor
- School of Mathematics and Physics, Henan Urban Construction University, Pingdingshan 467036, China
autor
- School of Mathematics and Physics, Henan Urban Construction University, Pingdingshan 467036, China
autor
- School of Physical Engineering and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052, China
Bibliografia
- [1] FUJISHIMA A., HONDA K., Nature, 238 (1972), 37.
- [2] LEE Y., HO W., YEH C., Appl. Surf. Sci., 354 Part A (2015), 20.
- [3] YURDDASKAL M., DIKICI T., YILDIRIM S., J. Alloy. Compd., 651 (2015), 59.
- [4] MA H., AN R., CHEN L., Electrochem. Commun., 57 (2015), 18.
- [5] DU W., YE Y., LI H., Vacuum, 86 (2012), 1387.
- [6] MARIN R.P., ISHIKAWA S., BAHRUJI H., Appl. Catal. A, 504 (2015), 62.
- [7] LI X.Y., XIAO J.R., WANG Z.Y., Mater. Sci. Eng. B, 177 (2012), 869.
- [8] ZHANG M., LIU L., YANG X., Surf. Coat. Technol., 229 (2013), 186.
- [9] SHANG Z.G., LIU Z.Q., SHANG P.J., J. Mater. Sci. Technol., 28 (2012), 385.
- [10] WANG Z.Y., YAO N., HU XING, Mater. Sci. Semicond. Process., 21 (2014), 91.
- [11] ZHANG X., LI D., WAN J., Mater. Sci. Semicond. Process., 43 (2016), 47.
- [12] YAHAYA M.Z., ABDULLAH M.Z, MOHAMAD A.A., J. Alloy. Compd., 651 (2015), 557.
- [13] SCHEFFEL B., MODES T., METZNER C., Surf. Coat. Technol., 287 (2016), 138
- [14] SIRGHI L., HATANAKA Y., SAKAGUCHI K., Appl. Surf. Sci., 352 (2015), 38.
- [15] HOTSENPILLER P.A.M., WILSON G.A., ROSHKO A., J. Cryst. Growth, 166 (1996), 779.
- [16] ALBERTINETTI N., MINDEN H.T., Appl. Opt., 35 (1996), 5620.
- [17] GIBSON D., CHILD D., SONG S., Thin Solid Films, 592 (2015), 276.
- [18] ZHANG X., COOKE K., CARMICHAEL P., Surf. Coat. Technol., 236 (2013), 290.
- [19] ZHAOYONG W., NING Y., CHANGBAO H., Appl. Surf. Sci., 288 (2014), 604.
- [20] YONG Z., W., XING H., NING Y., J. Electron. Mater., 44 (2015), 979.
- [21] WANG Z.Y., YAO N., HU X., Vacuum, 108 (2014), 20.
- [22] HOSHI Y., SUZUKI E., SHIMIZU H., Electrochim. Acta, 44 (1999) 3945.
- [23] MATTOX D.M., J. Vac. Sci. Technol. A, 7 (1989) 1106.
- [24] KIM D.J., HAHN S.H., OH S.H., Mater. Lett., 57 (2) (2002), 355.
- [25] HASAN M.M., HASEEB A.S.M.A., SAIDUR R., Opt. Mater., 32 (2010), 690.
- [26] SANI S.R., ALI A.M., JAFARI R., Physica B, 406 (2011), 3382.
- [27] FOX M., Optical Properties of Solids, Oxford University, Press, England, 2005.
- [28] DEOTALE A.J., NANDEDKAR R.V., Mater. Today Pro., 3 (2016), 2069.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ecaf0ed-4f49-4cbb-98a4-6f8e1b5e7998