PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis of New Composite Adsorbents for Removing Heavy Metals and Dyes from Aqueous Solution

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the current study, a novel composite (Fe3O4 @MnO2@Al2O3) was prepared to remove crystal violet dye and cadmium from aqueous solutions. The coprecipitation method was utilized to synthesize the composite. Batch studies were carried out using a contact period of 0.5–3 hours, an initial crystal violet and cadmium content of 50–200 mg/L, an agitation speed of 50–200 rpm, a pH of 4–12, and a composite dosage of 0.2–1.0 g per 50 mL of contaminated solution. The isotherm and kinetics models were formulated the experimental data. XRD, SEM-EDS, and FTIR analyses were utilized for composite characterization. The results revealed that the removal efficacy of crystal violet dye was 99.311% at 1 g of adsorbent, pH 12, 50 mg/L, 1 hour, and 200 rpm. The removal efficacy for cadmium (Cd) is 99.7296% at 1 g of sorbent mass at pH 6, 50 mg/L, 1 hour, and 200 rpm. The outcomes demonstrated that the Langmuir model could accurately depict the sorption of crystal violet dye onto the composite with R2 (0.9882) and SSE (0.7084). On the basis of Freundlich, the capacity of the composite to reflect cadmium sorption was assessed by its highest R2(0.8947) and lowest SSE (8.5149). The pseudo-second-order model is a more realistic way to explain how cadmium and crystal violet dye sorb onto the composite. The results showed that the composite is effective in eliminating target pollutants, since cadmium has a maximum adsorption capacity of 48.5052 mg/g and crystal violet dye has a capacity of 40.9682 mg/g. Therefore, (Fe3O4 @MnO2@Al2O3) can be used as efficient sorbent for removing Cd and crystal violet dye from synthetic industrial wastewater.
Słowa kluczowe
Rocznik
Strony
164--179
Opis fizyczny
Bibliogr. 59 poz., rys., tab.
Twórcy
  • Environmental Research and Studied Center, University of Babylon, Iraq
  • Environmental Research and Studied Center, University of Babylon, Iraq
  • Environmental Research and Studied Center, University of Babylon, Iraq
Bibliografia
  • 1. Mokif L.A., Faisal A.A.H. 2023. Funnel and Gate Permeable Reactive Barrier Permeable Reactive Barrier Configuration for Contaminated Groundwater Remediation – Designing, Installation, and Modeling : A Review, 2415–33.
  • 2. Mokif L.A. 2015. Research Article Evaluation of Treated Water at Three Adjacent Water Treatment Stations in Al-Hilla City, Iraq by Using CCME Water Quality Index, Res. J. Appl. Sci. Eng. Technol. 10, 1343–1346.
  • 3. Mokif L.A. 2020. New Natural Coagulant for Biochemical Oxygen Demand (BOD) Removal from Domestic Wastewater, 24, 66–68.
  • 4. Rafaqat S., Ali N., Torres C., Rittmann B. 2022. Recent progress in treatment of dyes wastewater using microbial-electro-Fenton technology, RSC Adv. 12, 17104–17137.
  • 5. Dutta S., Gupta B., Srivastava S.K., Gupta A.K. 2021. Materials Advances Recent advances on the removal of dyes from wastewater using various adsorbents : a critical, 4497–4531. https://doi. org/10.1039/d1ma00354b
  • 6. Mokif L.A., Abdulhusain N.A. 2022. A Low Cost Material for Treatment Wastewater Contained Petroleum Pollution, in: IOP Conf. Ser. Earth Environ. Sci., IOP Publishing, 12014.
  • 7. Liu Q. 2020. Pollution and treatment of dye wastewater, in: IOP Conf. Ser. Earth Environ. Sci., IOP Publishing, 52001.
  • 8. Aragaw T.A., Bogale F.M. 2021. Biomass-Based Adsorbents for Removal of Dyes From Wastewater : a review, 9. https://doi.org/10.3389/ fenvs.2021.764958
  • 9. Al-Tohamy R., Ali S.S., Li F., Okasha K.M., Mahmoud Y.A.-G., Elsamahy T., Jiao H., Fu Y., Sun J. 2022. A critical review on the treatment of dyecontaining wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety, Ecotoxicol. Environ. Saf. 231, 113160.
  • 10. Kandisa R.V., Kv N.S., Shaik K.B. 2016. Gopinath R. Bioremediation & Biodegradation Dye Removal by Adsorption : A Review, 7. https://doi. org/10.4172/2155-6199.1000371
  • 11. Zaim M., Zaimee A., Sarjadi M.S. 2021. Heavy Metals Removal from Water by Efficient Adsorbents.
  • 12. Abdulhusain N.A., Mokif L.A. 2023. The Removal Performance of Bio-Sorption on Sunflower Seed Husk for Copper and Lead Ions from Aqueous Solutions, 24, 110–117.
  • 13. Sankhla M.S., Kumari M., Nandan M., Kumar R., Agrawal P. 2016. Heavy metals contamination in water and their hazardous effect on human health-a review, Int. J. Curr. Microbiol. App. Sci. 5, 759–766.
  • 14. Zhu F., Zheng Y.-M., Zhang B.-G., Dai Y.-R. 2021. A critical review on the electrospun nanofibrous membranes for the adsorption of heavy metals in water treatment, J. Hazard. Mater. 401, 123608.
  • 15. Renu M., Agarwal K. Singh. 2017. Heavy metal removal from wastewater using various adsorbents: a review, J. Water Reuse Desalin. 7, 387–419.
  • 16. Zhang H., Xu F., Xue J., Chen S., Wang J. 2020. Enhanced removal of heavy metal ions from aqueous solution using manganese dioxide-loaded biochar : Behavior and mechanism, Sci. Rep. 1–13. https:// doi.org/10.1038/s41598-020-63000-z
  • 17. Ruan W., Hu J., Qi J., Hou Y., Zhou C., Wei X. 2019. Removal of dyes from nanomaterials : A review wastewater by, 10, 9–20. https://doi.org/10.5185/ amlett.2019.2148
  • 18. Gopalakrishnan A., Krishnan R., Thangavel S., Venugopal G., Kim S.-J. 2015. Removal of heavy metal ions from pharma-effluents using grapheneoxide nanosorbents and study of their adsorption kinetics, J. Ind. Eng. Chem. 30, 14–19.
  • 19. Al-alawy A.F., Al-abodi E.E., Kadhim R.M. 2018. Journal of Engineering, 24, 60–72.
  • 20. Fizikokimia S., Magnetit N., Sebagai F.O., Pepejal P., Homogen M. 2018. Synthesis and physicochemical properties of magnetite nanoparticles (Fe3 O4 ) as potential solid support for homogeneous catalysts, 22, 768–774.
  • 21. Wei Y., Han B., Hu X., Lin Y. 2012. Procedia Engineering Synthesis of Fe3 O4 nanoparticles and their magnetic properties, 0–5. https://doi.org/10.1016/j. proeng.2011.12.498
  • 22. Webster T.J., Kuča K. 2021. Green Synthesis of Fe3 O4 Nanoparticles Stabilized by a Garcinia mangostana Fruit Peel Extract for Hyperthermia and Anticancer Activities, 2515–2532.
  • 23. Suman H., Sangal V.K., Chen C., Cai F. 2019. Synthesis of Fe3 O4 nanoparticles for colour removal of printing ink solution Synthesis of Fe3 O4 nanoparticles for colour removal of printing ink solution. https://doi.org/10.1088/1742-6596/1245/1/012040
  • 24. Abdulkareem L., Ayad M. 2023. Laboratory Studies into Tetracycline Removal from Aqueous Solutions by Beads of Calcium - Iron Oxide Nanoparticles, Water, Air, Soil Pollut. https://doi.org/10.1007/ s11270-023-06585-1
  • 25. Iskandar F., Asbahri A., Dwinanto E., Abdullah M. 2015. Synthesis of Fe3 O4 Nanoparticles Using the Co-Precipitation Method and Its Development into Nanofluids as a Catalyst in Aquathermolysis Reactions, 1112, 205–208. https://doi.org/10.4028/ www.scientific.net/AMR.1112.205
  • 26. Ganapathe L.S., Kazmi J. 2022. Molarity Effects of Fe and NaOH on Synthesis and Characterisation of Magnetite (Fe3 O4 ) Nanoparticles for Potential Application in Magnetic Hyperthermia Therapy.
  • 27. Darminto D., Baqiya M., Cahyono Y., Triwikantoro T. 2011. Preparing Fe3 O4 Nanoparticles from Fe2 + Ions Source by Co ‐ precipitation Process in Various pH Preparing Fe3 O4 Nanoparticles from Fe2 + Ions Source by Coprecipitation Process in Various pH View online : http://dx.doi.org/10.1063/1.3667264 View Table of Contents : http://scitation.aip.org/ content/aip/proceeding/aipcp/1415?ver=pdfcov Published by the AIP Publishing, 4–9. https://doi. org/10.1063/1.3667264
  • 28. Mohammadi H., Nekobahr E., Akhtari J., Saeedi M., Akbari J. 2021. Synthesis and characterization of magnetite nanoparticles by co-precipitation method coated with biocompatible compounds and evaluation of in-vitro cytotoxicity, Toxicol. Reports. 8, 331–336. https://doi.org/10.1016/j. toxrep.2021.01.012
  • 29. Ba-abbad M.M., Benamour A., Ewis D., Mohammad A.W. 2022. Synthesis of Fe3 O4 Nanoparticles with Different Shapes Through a Co-Precipitation Method and Their Application, JOM. 74, 35313539. https://doi.org/10.1007/s11837-022-05380-3
  • 30. Hariani P.L., Faizal M., Setiabudidaya D. 2013. Synthesis and Properties of Fe3 O4 Nanoparticles by Co-precipitation Method to Removal Procion Dye, 4. https://doi.org/10.7763/IJESD.2013.V4.366
  • 31. Prabowo B., Khairunnisa T., Bayu A., Nandiyanto D. 2018. Economic Perspective in the Production of Magnetite (Fe3 O4 ) Nanoparticles by Co-precipitation Method, 2, 1–4.
  • 32. Rahmat M., Rehman A., Rahmat S., Nawaz H. 2019. Highly efficient removal of crystal violet dye from water by MnO2 based nanofibrous mesh / photocatalytic process, Integr. Med. Res. 8, 5149–5159. https://doi.org/10.1016/j.jmrt.2019.08.038
  • 33. Abbas R.F., Hami H.K., Mahdi N.I., Waheb A.A. 2020. Removal of Eriochrome Black T Dye by Using Al2 O3 Nanoparticles : Central Composite Design, Isotherm and Error Analysis, Iran. J. Sci. Technol. Trans. A Sci. 6. https://doi.org/10.1007/ s40995-020-00911-6
  • 34. Lai S.O., Chong K.C., Kerk Z.W., Ooi B.S., Lau W.J. 2017. Fabrication of PES/MnO mixed matrix membranes for cadmium removal, Malaysian J Anal Sci. 21, 381–390.
  • 35. Wang Y., Gong S., Li Y., Li Z., Fu J. 2020. Adsorptive removal of tetracycline by sustainable ceramsite substrate from bentonite/red mud/pine sawdust, Sci. Rep. 10, 1–18. https://doi.org/10.1038/ s41598-020-59850-2
  • 36. Hassan W., Faisal A., Abed E., Al-Ansari N., Saleh B. 2021. New composite sorbent for removal of sulfate ions from simulated and real groundwater in the batch and continuous tests, Molecules. 26. https:// doi.org/10.3390/molecules26144356
  • 37. Lagergren S. 1989. About the theory of so-called adsorption of soluble substances, K. Seventeen Hand. 24, 1–39.
  • 38. Ho Y.S., McKay G. 1999. Pseudo-second order model for sorption processes, Process Biochem. 34, 451–465.
  • 39. Mokif L.A., Faisal A.A.H. 2023. Manufacturing of cost-effective sorbent from by-product materials for treating real and simulated groundwater contaminated with antibiotics, 30105, 1–14. https://doi. org/10.5004/dwt.2023.30105
  • 40. Sajid M., Javed T., Areej I., Nouman M. 2022. Sequestration of crystal violet dye from wastewater using low-cost coconut husk as a potential adsorbent, 85, 2295–2317. https://doi.org/10.2166/ wst.2022.124
  • 41. Lei T., Li S., Jiang F., Ren Z., Wang L., Yang X., Tang L., Wang S. 2019. Adsorption of Cadmium Ions from an Aqueous Solution on a Highly Stable Dopamine-Modified Magnetic Nano- Adsorbent.
  • 42. Bassam R., El Hallaoui A., El Alouani M., Jabrane M., Hassan E., Khattabi E., Tridane M., Belaaouad S. 2021. Studies on the Removal of Cadmium Toxic Metal Ions by Natural Clays from Aqueous Solution by Adsorption Process.
  • 43. Murithi G., Onindo C.O., Wambu E.W., Muthakia G.K. 2014. Com Removal of Cadmium (II) Ions from Water by Adsorption using Water Hyacinth (Eichhornia crassipes) Biomass, 93613–3631.
  • 44. Sukla K., Kumar U. 2021. South African Journal of Chemical Engineering Adsorption of brilliant green dye from aqueous solution onto chemically modif ied areca nut husk, South African J. Chem. Eng. 35, 33–43. https://doi.org/10.1016/j.sajce.2020.11.001
  • 45. Valizadeh K., Bateni A., Sojoodi N., Ataabadi M.R., Behroozi A.H., Maleki A., You Z. 2022. Magnetized inulin by as a bio-nano adsorbent for treating water contaminated with methyl orange and crystal violet dyes, Sci. Rep. 1–13. https://doi.org/10.1038/ s41598-022-26652-7
  • 46. Dehvari M., Jamshidi B., Jorfi S., Pourfadakari S. 2021. Cadmium removal from aqueous solution using cellulose nanofibers obtained from waste sugarcane bagasse (SCB): isotherm, kinetic, and thermodynamic studies, 221, 218–228. https://doi. org/10.5004/dwt.2021.27060
  • 47. Masoudi R., Moghimi H., Azin E., Taheri R.A. 2018. Adsorption of cadmium from aqueous solutions by novel Fe3 O4-newly isolated Actinomucor sp. bionanoadsorbent: functional group study, Artif. Cells, Nanomedicine, Biotechnol. 46, 1092–1101.
  • 48. Fabryanty R., Valencia C., Edi F., Nyoo J. 2017. Journal of Environmental Chemical Engineering Removal of crystal violet dye by adsorption using bentonite – alginate composite, 5, 5677–5687. https://doi.org/10.1016/j.jece.2017.10.057
  • 49. Ghelani D., Faisal S. 2022. Synthesis and characterization of Aluminium Oxide nanoparticles, Authorea Prepr.
  • 50. Ali O.I., Azzam A.B. 2023. Functional Ag - EDTA - modified MnO2 nanocoral reef for rapid removal of hazardous copper from wastewater, Environ. Sci. Pollut. Res. 30, 123751–123769. https://doi. org/10.1007/s11356-023-30805-0
  • 51. Divya P. 2019. Synthesis and Characterization of MnO2 Nano particles Prepared by Hydrothermal Processing, 2–9.
  • 52. Mokif L.A., Faisal A.A.H. 2023. Manufacturing of cost-effective sorbent from by-product materials for treating real and simulated groundwater contaminated with antibiotics, Desalin. WATER Treat. 314, 35–48.
  • 53. Foroutan R., Peighambardoust S.J., Peighambardoust S.H., Pateiro M., Lorenzo J.M. 2021. Adsorption of Crystal Violet Dye Using Activated Carbon of Lemon Wood and Activated Carbon / Fe3 O4 Magnetic, 1–19.
  • 54. Sun P., Hui C., Khan R.A., Du J., Zhang Q., Zhao Y. 2015. Efficient removal of crystal violet using Fe3 O4 -coated biochar : the role of the Fe3 O4 nanoparticles and modeling study their adsorption behavior, Nat. Publ. Gr. 1–12. https://doi.org/10.1038/srep12638
  • 55. Aref L., Navarchian A.H., Dadkhah D. 2016. Adsorption of Crystal Violet Dye from Aqueous Solution by Poly (Acrylamide- co -Maleic Acid )/ Montmorillonite Nanocomposite, J. Polym. Environ. 9–11. https://doi.org/10.1007/s10924-016-0842-z
  • 56. Ganea I., Nan A., Baciu C. 2021. Effective Removal of Crystal Violet Dye Using Neoteric Magnetic Nanostructures Based on Functionalized Poly ( Benzofuran- co -Arylacetic Acid ): Investigation of the Adsorption Behaviour and Reusability.
  • 57. Pourjaafar M., Askari A., Salehi A., Abadi S., Anvaripour B., Nemati A., Rahimi S.A. 2023. Removal of cadmium from aqueous solution using nano Prosopis cineraria leaf ash (NPCLA), Kerman Univ. Med. Sci. 10, 225–233. https://doi.org/10.34172/ EHEM.2023.25
  • 58. Char F.B., Yang W., Luo W., Sun T., Xu Y., Sun Y. 2022. Adsorption Performance of Cd (II) by Chitosan- Fe3 O4 -Modified.
  • 59. Kayranli B. 2022. Cadmium removal mechanisms from aqueous solution by using recycled lignocelluloses, Alexandria Eng. J. 61, 443–457. https://doi. org/10.1016/j.aej.2021.06.036
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ec603aa-164a-4022-a4c0-5f45a97f93a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.