PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of the Acoustic Emission Technique for Damage Identification in the Fiber Reinforced Polymer Composites

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A set of experiments having in target determination of fracture resistance was performed on the Fiber Reinforced Polymer (FRP) composites specimens with an additional monitoring of damage onset and evolution with a so-called Acoustic Emission (AE) technique. The AE technique is a non-destructive material testing method, which enables registering the phenomena usually not audible with a human ear - the frequency bands lay between 100 and 1000kHz. For the FRP composites this enables monitoring various damage phenomena - matrix cracking, delamination, fiber cracking etc. by acquisition and subsequent analysis of several AE parameters: number of hits, number of counts, amplitude or energy of the signal. In the paper advantages of a deeper analysis of the raw AE signal was presented with an application of the Fast Fourier Transform (FFT), leading to a more detailed damage identification along the whole loading procedure. The study proved the usability of the AE method in damage monitoring of the FRPs; a bundle of illustrative examples of chosen acoustic emission parameters’ evolution displayed on the background of the load applied to composite specimens was presented and interpreted.
Twórcy
  • Lublin University of Technology, 36 Nadbystrzycka St., 20-618 Lublin, Poland
  • Lublin University of Technology, 36 Nadbystrzycka St., 20-618 Lublin, Poland
Bibliografia
  • 1. Wysmulski P., Debski H., Rozylo P., Falkowicz K. A study of stability and post-critical behaviour of thin walled composite profiles under compression. Eksploatacja i Niezawodność – Maintenance and Reliability 2016; 18(4): 632–637.
  • 2. de Morais A.B., de Moura M.F.S.F. Evaluation of initiation criteria used in interlaminar fracture tests. Engineering Fracture Mechanics 2006; 73: 2264–2276.
  • 3. AMSY-5 User Manual, 2009.
  • 4. Kubiak T. et al. Experimental investigation of failure process in compressed channel-section GFRP laminate columns assisted with the acoustic emission method. Composite Structures 2015; 133: 921–929.
  • 5. Rusinek R. et al. Dynamics of the middle ear ossicles with an SMA prosthesis. International Journal of Mechanical Sciences 2017; 127: 163–175.
  • 6. Wevers M. NDT&E International 1997; 30 (2): 99–106.
  • 7. Bhat M., Majeed M., Murthy C. NDT&E International 1994; 27 (1): 27–31.
  • 8. Leone C., Caprino G., de Iorio I. Composites Science and Technology 2006; 66: 233–239.
  • 9. Teter A. et al. On buckling collapse and failure analysis of thin-walled composite lipped-channel columns subjected to uniaxial compression, ThinWalled Structures 2014; 85: 324–331.
  • 10. Arumugam V. et al. Ultimate Strength Prediction of Carbon/Epoxy Tensile Specimens from Acoustic Emission Data. J. Mater. Sci. Technol., 2010; 26(8): 725–772.
  • 11. Scholey J.J. et al. Quantitative experimental measurements of matrix cracking and delamination using acoustic emission. Composites 2010; A(41): 612–623.
  • 12. Pereira A.B., de Morais A.B. Mixed mode I + II interlaminar fracture of carbon/epoxy laminates. Composites 2008; A39(2): 322–333.
  • 13. Kłonica M. et al. Polyamide 6 surface layer following ozone treatment. International Journal of Adhesion and Adhesives 2016; 64: 179–187.
  • 14. Oskouei A.R. et al. An integrated approach based on acoustic emission and mechanical information to evaluate the delamination fracture toughness at mode I in composite laminate. Material s and Design 2011; 32: 1444–1455.
  • 15. Samborski S. Numerical analysis of the DCB test configuration applicability to mechanically coupled Fiber Reinforced Laminated Composite beams. Composite Structures 2016; 152: 477–487.
  • 16. Brunner A.J. et al. A status report on delamination resistance testing of polymer–matrix composites. Engineering Fracture Mechanics 2008; 75: 2779–2794.
  • 17. Cooley J.W., Tukey J.W. An Algorithm for the Machine Calculation of Complex Fourier Series.Math. Comput., 1965; 19:2: 97–301.
  • 18. ASTM D7905 Standard.
  • 19. Samborski S. Analysis of the end-notched flexure test configuration applicability for mechanically coupled fiber reinforced composite laminates. Composite Structures 2017; 163: 342–349.
  • 20. Ducept F. et al. An experimental study to validate tests used to determine mixed mode failure criteria of glass/epoxy composites. Composites 1997; 28A: 719–729.
  • 21. Ni Q.-Q., Jinen E. Fracture Behavior And Acoustic Emission In Bending Tests On Single-Fiber Composites. Engineering Fracture Mechanics 1997; 56(6): 779–796.
  • 22. Benmedakhene S. et al. Initiation and growth of delamination in glass/epoxy composites subjected to static and dynamic loading by acoustic emission monitoring. Compos Sci Technol 1999; 59: 201–208.
  • 23. Bieniaś J., Dadej K., Surowska B. Interlaminar fracture toughness of glass and carbon reinforced multidirectional fiber metal laminates. EngineeringFracture Mechanics 2017; 175: 127–145
  • 24. Debski H. et al. Local buckling, post-buckling and collapse of thin-walled channel section composite columns subjected to quasi-static compression. Composite Structures 2016; 136: 593–601.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ec05686-3a0a-4686-bc63-ed63375dae06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.