PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Freight car model with Y25 bogies stability analysis

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Y25 (25Tn) bogies have been used in freight cars for over 50 years. It is a proven design with a positive opinion in many European countries. In addition to the generally positive opinion about the operational properties of the Y25 bogies, there are sometimes publications whose authors notice certain imperfections related mainly to the so-called running instability, resulting in derailment under certain motion conditions. This paper presents results simulation of motion tests of a freight car with Y25 bogies. A freight car model was created using the VI-Rail software. The research focus on determining the critical velocity and examining nature of the model solutions in the overcritical velocity range. Straight track as well as curved track motion is analysed. Empty and full wagon properties are considered. Impact of changes the suspension system selected parameters values on vehicle model solutions stability as well as the vehicle impact on track was analysed.
Czasopismo
Rocznik
Tom
Strony
13--24
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
  • Faculty of Transport, Warsaw University of Technology, Poland
Bibliografia
  • [1] Bogusz W. Technical stability (in Polish: Stateczność techniczna). PWN, Warsaw 1972.
  • [2] Bruni S, Vinolas J, Berg M, Polach O, Stichel S. Modeling of suspension components in a rail vehicle dynamics context. Vehicle Syst Dyn. 2011;49(7): 1021-1072.https://doi.org/10.1080/00423114.2011.586430
  • [3] Csiba J. Bogie type anniversary: the bogie type Y25 is over 50 years. Proceedings of the 10th International Conference on Railway Bogies and Running Gears. Budapest, 12-15 September 2016, 253-262.
  • [4] Dusza M. Rail vehicle model possibility of safe motion analysis in the overcritical velocity range. Proceedings of the 11th International Conference on Railway Bogies and Running Gears, Edited by Zobory I. Department of Rolling Stock, SSME/GTE, Budapest 2020, 159-168.
  • [5] European Standard PN-EN 14363+A1:2019-02.
  • [6] Iwnicki S. (ed.). Handbook of railway vehicle dynamics. CRC Press Inc. 2006.https://doi.org/10.1201/9780429469398
  • [7] Kaiser AB, Cusumano JP, Gardner JF. Modelling and dynamics of friction wedge dampers in railroad trucks. Vehicle Syst Dyn. 2002;38(1):55-82.https://doi.org/10.1076/vesd.38.1.55.3519
  • [8] Kalker JJ. A fast algorithm for the simplified theory of rolling contact. Vehicle Syst Dyn. 1982;11:1-13.https://doi.org/10.1080/00423118208968684
  • [9] Knothe K, Böhm F. History of stability of railway and road vehicles. Vehicle Syst Dyn. 1999;31:283-323. https://doi.org/10.1076/vesd.31.5.283.8362
  • [10] Pagaimo J, Magalheas H, Costa JN, Ambrosio J. Derailment study of railway cargo vehicle using a response surface methodology. Vehicle Syst Dyn. 2020; 60(1):309-334. https://doi.org/10.1080/00423114.2020.1815810
  • [11] Piotrowski J, Pazdzierniak P, Adamczewski T. Curving dynamics of freight wagon with one- and twodimensional friction damping. Proc. of the 10th Mini Conference on Vehicle System Dynamics. Identification and Anomalies. Edited by Zobory I. Budapest 6-8 November 2006, 215-222.
  • [12] Piotrowski J. Kalker’s algorithm Fastsim solves tangential contact problems with slip-dependent friction and friction anisotropy. Vehicle Syst Dyn. 2010; 48(7):869-889. https://doi.org/10.1080/00423110903178495
  • [13] Shabana AA, Zaazaa KE, Sugiyama H. Railroad vehicle dynamics: a computational approach. Taylor & Francis LLC and the CRC, 2008. https://doi.org/10.1201/9781420045857
  • [14] Zboiński K, Dusza M. Self-exciting vibrations and Hopf’s bifurcation in non-linear stability analysis of rail vehicles in curved track. Eur J Mech A-Solid. 2010;29(2):190-203. https://doi.org/10.1016/j.euromechsol.2009.10.001
  • [15] Zboiński K, Dusza M. Extended study of rail vehicle lateral stability in a curved track. Vehicle Syst Dyn. 2011;49(5):789-810. https://doi.org/10.1080/00423111003770447
  • [16] Zboiński K, Dusza M. Bifurcation analysis of 4-axle rail vehicle models in a curved track. Nonlinear Dynam. 2017;89(2):863-885. https://doi.org/10.1007/s11071-017-3489-y
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2eb9bf8e-6027-41eb-b706-f9c3e1e0bb4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.