Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The concept of different compositional biomass is introduced to enhance the binding properties and utilize the use of different seasonal biomasses. The effect of densification on the heating values of single pure and mixed compositional biomasses is observed with and without applying special type of pretreatment named as ‘Torrefaction’. The moisture contents and bulk densities were also calculated for these briquettes. The effects of average moisture contents and bulk density (which show the swelling nature) on the heating values are also observed. The experiments have been performed on the pelletizer equipment to form briquetted biomass and bomb calorimeter was used to determine the calorific values of different briquettes. Finally, the percentage decrease in the average moisture contents of different categories of torrefied briquettes from non-torrefied briquettes were also calculated and compared.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
23--28
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
- University of Engineering and Technology (Lahore) Faisalabad Campus, Faisalabad, Pakistan, 38000
autor
- University of Engineering and Technology (Lahore) Faisalabad Campus, Faisalabad, Pakistan, 38000
autor
- University of Engineering & Technology, Department of Chemical Engineering, Lahore, Pakistan, 54890
autor
- University of Engineering and Technology (Lahore) Faisalabad Campus, Faisalabad, Pakistan, 38000
autor
- University of Engineering & Technology, Department of Chemical Engineering, Lahore, Pakistan, 54890
Bibliografia
- 1. Ciolokosz, D. & Wallace, R. (2011). A review of torrefaction for bioenergy feed stock product. Biofuels, Bioprod. Biorefin. 5(3), 317-329. DOI: 10.1002/bbb.275.
- 2. Medic, D., Darr, M., Shah, A., Potter, B. & Zimmerman, J. (2012). Effect of torrefaction process parameters on biomass feedstock upgrading. Fuel 91(1), 147-154. DOI: 10.1016/j. fuel.2011.07.019.
- 3. Chou, C.S., Lin, S.H., & Lu, W.C. (2009). Preperation and characterization of solid biomass fuel from rice straw and rice bran. Fuel Process. Technol. 90(7-8), 980-987. DOI: 10.1016/j. fuproc.2009.04.012.
- 4. Arias, B., Pevida, C., Fermoso, J., Plaza, M.G., Rubiera, F. & Pis, J.J. (2008). Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process. Technol. 89(2), 169-175. DOI: 10.1016/j.fuproc.2007.09.002.
- 5. Phanphanich, M. & Mani, S. (2011). Impact of torrefaction on the gridability and fuel characteristics of forest biomass. Bioresour. Technol. 102(2), 1246-1253. DOI: 10.1016/j. biortech.2010.08.028.
- 6. Bergman, P.C.A. & Kiel, J.H.A. (2005). Torrefaction for biomass upgrading. In 14th European Biomass Conference, Paris, France.
- 7. Hakkou, M., Petrissans, M., Gerardin, P. & Zoulalian, A. (2006). Investigations of the reasons for fungal durability of heat-treated beach wood. Polym. Degrad. Stab. 91(2), 393-397. DOI: 10.1016/j.polymdegradstab.2005.04.042.
- 8. Felfli, F.F., Luengo, C.A., Suarez, J.A. & Beaton, P.A. (2005). Wood briquette torrefaction. Energy Sustainable Dev. 9(3), 19-23. DOI: 10.1016/S0973-0826(08)60519-0.
- 9. Wamukonya, L. & Jenkins, B. (1995). Durability and relaxation of sawdust and wheat-straw briquettes as possible fuel for Kenya. Biomass Bioenergy 8(3), 175-179. DOI: 10.1016/0961-9534(95)00016-Z.
- 10. Li, Y., Liu, H. & Zhang, O. (2001). High pressure compaction of municipal solid waste to form densified fuel Fuel Process. Technol. 74(2), 81-91. DOI: 10.1016/S0378-3820(01)00218-1.
- 11. Tumuluru, J.S., Wright, C.T., Kenney, K.L. & Hess, J.R. (2010). A technical review on biomass processing: densifi cation, preprocessing, modeling and optimization. In Proceeding of ASABE Annual International Meeting, Pittsburgh, Pennsylvania.
- 12. Islam, M.M., Khan, K., Ali, M.N. & Islam, M.S. (2003). An investigation on the raw materials and products of the briquetting machine. In Synopsis on The Role of Renewable and Alternative Energy Resources for National Development.
- 13. Werther, J., Salnger, M., Hartge, E.U., Ogada, T. & Siagi, Z. (2000). Combustion of agriculture residues. Prog. Energy Combust. Sci. 26(1), 1-27. DOI: 10.1016/S0360-1285(99)00005-2.
- 14. Kaliyan, N. & Morey, R.V. (2009). Review: Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 33(3), 337-359. DOI: 10.1016/j. biombioe.2008.08.005.
- 15. Schell, D.J. & Harwood, C. (1994). Milling of lignocellulosic biomass. Appl. Biochem. Biotechnol. 45(1), 159-168. DOI: 10.1007/BF02941795.
- 16. Gravalos, I., Kateris, D., Xyradakis, P., Gialamas, T., Loutridis, S., Augousti, A., Georgiades, A. & Tsiropoulos, Z. (2010). Biomass residue pellets for heating purpose. In FORMEC 2010: Forest Engineering: Meeting the Needs of the Society and The Environment, Padova, Italy.
- 17. Zaldivar, J., Nielsen, J. & Olsson, L. (2001). Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl. Microbiol. Biotechnol. 56(1-2), 17-26. DOI: 10.1007/s002530100624.
- 18. Jenkins, B.M., Baxter, L.L., Miles, T.R.J. & Miles, T.R. (1998). Combustion properties of biomass Fuel Process. Technol. 54(1-3), 17-46. DOI: 10.1016/S0378-3820(97)00059-3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2eb67e91-80b8-4ecd-91ad-6449828c0bb2