PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of Fractional Order Mathematical Modelling of HFMD Transmission through ABC Derivative

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza modelu matematycznego ułamkowego rzędu transmisji choroby HFMD z wykorzystaniem pochodnej ABC
Języki publikacji
EN
Abstrakty
EN
The mathematical modelling of Hand, Foot, and Mouth Disease (HFMD) transmission using fractional-order calculus, especially the Atangana-Baleanu derivative, is investigated in this paper. HFMD is a viral illness that usually affects premature children and can have serious consequences. Conventional models based on integer-order derivatives have limitations in capturing the intricate dynamics of HFMD transmission accurately. Fractional-order calculus is employed in this study to enhance the modelling precision by incorporating memory and hereditary effects into the system. The Atangana-Baleanu derivative is used to explain fractional differentiation, allowing for a more accurate representation of disease processes. The proposed model is analyzed using analytical techniques to evaluate its stability, existence, and uniqueness. The findings contribute to an improved understanding of HFMD transmission dynamics and provide insights into effective control strategies for disease mitigation. In this work, the use of Atangana-Baleanu derivative indicates their potential for improving the accuracy as well as validity of mathematical models.
PL
Rocznik
Strony
199--221
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • College of Engineering and Technology Department of Mathematics SRM Institute of Science and Technology Kattankulathur, Chengalpattu, 603203, India
  • Anna University Department of Mathematics Chennai 600025, India
Bibliografia
  • [1] M. Aakash and C. Gunasundari. Effect of partially and fully vaccinated individuals in some regions of India: A mathematical study on covid19 outbreak. Commun. Math. Biol. Neurosci, Article ID 25:25p., 2023.
  • [2] M. Aakash, C. Gunasundari, and Q. M. Al-Mdallal. Mathematical modeling and simulation of SEIR model for COVID-19 outbreak: A case study of Trivandrum. Frontiers in Applied Mathematics and Statistics, 9:9p., 2023.
  • [3] S. Ahmad, A. Ullah, Q. M. Al-Mdallal, H. Khan, K. Shah, and A. Khan. Fractional order mathematical modeling of covid-19 transmission. Chaos, Solitons & Fractals, 139 (Article ID 110256):10p., 2020.
  • [4] M. Arfan, K. Shah, A. Ullah, M. Shutaywi, P. Kumam, and Z. Shah. On fractional order model of tumor dynamics with drug interventions under nonlocal fractional derivative. Results in Physics, 21:103783, 2021.
  • [5] M. Caputo and M. Fabrizio. A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications, 1:1–13, 2015.
  • [6] S.-B. Chen, H. Jahanshahi, O. A. Abba, J. Solís-Pérez, S. Bekiros, J. Gómez-Aguilar, A. Yousefpour, and Y.-M. Chu. The effect of market confidence on a financial system from the perspective of fractional calculus: numerical investigation and circuit realization. Commun. Nonlinear Sci. Numer. Simul., 140(Article ID 110223):15p., 2020.
  • [7] Fatmawati, M. A. Khan, C. Alfiniyah, and E. Alzahrani. Analysis of dengue model with fractal-fractional Caputo-Fabrizio operator. Adv. Difference Equ. 422, 23, 2020.
  • [8] B. Ghanbari. A fractional system of delay differential equation with nonsingular kernels in modeling hand-foot-mouth disease. Adv. Difference Equ. 536, 20, 2020.
  • [9] D. H. Hyers. On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U.S.A., 27:222–224, 1941.
  • [10] C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado, and J. H. T. Bates. The role of fractional calculus in modeling biological phenomena: a review. Commun. Nonlinear Sci. Numer. Simul., 51:141–159, 2017.
  • [11] H. Jahanshahi, D. Chen, Y.-M. Chu, J. Gómez-Aguilar, and A. A. Aly. Enhancement of the performance of nonlinear vibration energy harvesters by exploiting secondary resonances in multi-frequency excitations. Eur. Phys. J. Plus, 136:27:1–22, 2021.
  • [12] S.-M. Jung. Hyers-Ulam stability of linear differential equations of first order. Applied Mathematics Letters, 17(10):1135–1140, 2004.
  • [13] Y. Khan, M. A. Khan, Fatmawati, and N. Faraz. A fractional Bank competition model in Caputo-Fabrizio derivative through Newton polynomial approach. Alexandria Engineering Journal, 60(1):711–718, 2021.
  • [14] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo. Theory and applications of fractional differential equations, volume 204 of North-Holland Math. Stud. Amsterdam: Elsevier, 2006.
  • [15] G. Kumar and C. Gunasundari. Turing instability of a diffusive predator-prey model along with an allee effect on a predator. Commun. Math. Biol. Neurosci, Article ID 40:15p., 2022.
  • [16] J. Losada and J. Nieto. Properties of a new fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications, 1:87–92, 2015.
  • [17] K. S. Nisar, S. Ahmad, A. Ullah, K. Shah, H. Alrabaiah, and M. Arfan. Mathematical analysis of SIRD model of covid-19 with Caputo fractional derivative based on real data. Results in Physics, 21(Article ID 103772):9p., 2021.
  • [18] K. M. Owolabi and A. Atangana. Numerical approximation of nonlinear fractional parabolic differential equations with Caputo–Fabrizio derivative in Riemann-Liouville sense. Chaos, Solitons and Fractals, 99:171–179, 2017
  • [19] M. U. Rahman, M. Arfan, Z. Shah, P. Kumam, and M. Shutaywi. Nonlinear fractional mathematical model of tuberculosis (tb) disease with incomplete treatment under Atangana-Baleanu derivative. Alexandria Engineering Journal, 60(3):2845–2856, 2021.
  • [20] T. M. Rassias. On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc., 72(2):297–300, 1978.
  • [21] N. B. Sharmila and C. Gunasundari. Travelling wave solutions for a diffusive prey-predator model with one predator and two preys. International Journal of Applied Mathematics, 35(5):661–64, 2022.
  • [22] R. Shi and T. Lu. Dynamic analysis and optimal control of a fractional order model for hand-foot-mouth disease. J. Appl. Math. Comput., 64 (1-2):565–590, 2020.
  • [23] H. M. Srivastava and K. M. Saad. Numerical simulation of the fractal-fractional Ebola virus. Fractal and Fractional, 4(4:49):13p., 2020.
  • [24] H. M. Srivastava, K. M. Saad, and M. M. Khader. An efficient spectral collocation method for the dynamic simulation of the fractional epidemiological model of the Ebola virus. Chaos Solitons Fractals, 140:8, 2020.
  • [25] A. E. Taylor and D. C. Lay. Introduction to functional analysis. John Wiley & Sons, New York-Chichester-Brisbane, second edition, 1980.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2eb1dc27-169f-4f0c-bcda-f28c906fe854
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.