PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Kawitacja hydrodynamiczna jako metoda wstępnej obróbki odpadów lignocelulozowych

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Hydrodynamic cavitation as a pretreatment method for lignocellulosic waste
Języki publikacji
PL
Abstrakty
PL
W ciągu ostatnich lat kawitacja hydrodynamiczna (KH) wykazała potwierdzoną skuteczność w wielu dziedzinach inżynieryjnych, zarówno w technologii wody, ścieków i odpadów oraz w sektorze przemysłowym. W porównaniu do innych innowacyjnych metod ,stosowanych w inżynierii środowiska, KH wykazuje szereg korzyści, charakteryzuje się m.in. prostą konstrukcją urządzeń, łatwą obsługą oraz niskimi kosztami eksploatacyjnymi. Co istotne, KH można łatwo połączyć z konwencjonalnymi i powszechnie stosowanymi technologiami w gospodarce odpadami oraz oczyszczaniu wody i ścieków. W pracy przedstawiono zbiór doświadczeń z zakresu zastosowania kawitacji hydrodynamicznej jako metody wstępnej obróbki odpadów lignocelulozowych, pozwalającej na poprawę ich stopnia biodegradowalności.
EN
In recent years, the effectiveness of hydrodynamic cavitation (HC) has been proven in many engineering fields. It has found several application in water, wastewater and waste technology, as well as in the industrial sector. Compared to other innovative methods used in environmental engineering, it presents several advantages, such as simple construction of reactors, easy operation and low operating costs. Importantly, HC can be easily combined with conventional and commonly used technologies in water and waste water treatment, as well as waste management. The paper presents a set of experiences in the field of application hydrodynamic cavitation as a method of lignocellulosic waste pre-treatment, allowing for improving its biodegradability.
Rocznik
Tom
Strony
12--16
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Politechnika Lubelska, Wydział Inżynierii Środowiska, Katedra Konwersji Biomasy i Odpadów w Biopaliwa, Nadbystrzycka 40B, 20-618 Lublin
Bibliografia
  • [1] Abuabdou Salahaldin M. A., Waseem Ahmad, Ng Choon Aun, Mohammed J. K. Bashir. 2020. „A review of anaerobic membrane bioreactors (AnMBR) for the treatment of highly contaminated landfill leachate and biogas production: Effectiveness, limitations and future perspectives”. Journal of Cleaner Production 255: 120215.
  • [2] Arrojo, Sara Fernández, Yolanda Benito. 2008. „A theoretical study of hydrodynamic cavitation”. Ultrasonics sonochemistry 15(3): 203-11.
  • [3] Beig, Bilal, Muhammad Riaz, Salman Raza Naqvi, Muhammad Hassan, Zhifeng Zheng, Keikhosro Karimi, Arivalagan Pugazhendhi, Abdulaziz Atabani and Nguyễn Thuy Lan Chi. 2020. „Current challenges and innovative developments in pretreatment of lignocellulosic residues for biofuel production: A review”. Fuel 287: 119670.
  • [4] Bimestre Thiago Averaldo, José Antonio Mantovani Júnior, César Augusto Botura, Eliana Vieira Canettieri, Celso Eduardo Tuna. 2020. „Theoretical modeling and experimental validation of hydrodynamic cavitation reactor with a Venturi tube for sugarcane bagasse pretreatment”. Bioresource technology 311: 123540.
  • [5] Bis Marta, Montusiewicz Agnieszka, Ozonek Janusz, Pasieczna-Patkowska Sylwia. 2015. „Application of hydrodynamic cavitation to improve the biodegradability of mature landfill leachate”. Ulirasonics Sonochemistry 26: 378-387.
  • [6] COM/2020/98 Komunikat Komisji Do Parlamentu Europejskiego, Rady, Europejskiego Komitetu Ekonomiczno-Społecznego I Komitetu Regionów. Nowy plan działania UE dotyczący gospodarki o obiegu zamkniętym na rzecz czystszej i bardziej konkurencyjnej Europy.
  • [7] Devadasu Sushmitha, Saurabh M. Joshi, Parag Ratnakar Gogate, Shirish Hari Sonawane, Srinath Suranani. 2019. „Intensification of delignification of Tectona grandis saw dust as sustainable biomass using acoustic cavitational devices”. Ultrasonics sonochemistry 63: 104914.
  • [8] Dular Matevž, Griessler-Bulc Tjaša, Gutierrez-Aguirre lon, Heath Ester, Kosjek Tina, Krivograd Klemenčič Aleksandra, Oder Martina, Petkovšek Martin, Rački Nejc, Ravnikar Maja, Šarc Andrej, Širok Brane, Zupanc Mojca, Žitnik Miha, Kompare Boris. 2016. „Use of hydrodynamic cavitation in (waste)water treatment”. Ultrasonics sonochemistry, 29: 577-588.
  • [9] Dz.U.2021.2151 Ustawa z dnia 17 listopada 2021 r. o zmianie ustawy o odpadach oraz niektórych innych ustaw.
  • [10] Gągol, Michał, Andrzej Przyjazny, Grzegorz Boczkaj. 2018. „Wastewater treatment by means of advanced oxidation processes based on cavitation - A review”. Chemical Engineering Journal 338: 599-627.
  • [11] Gogate Parag Ratnakar, Abhijeet M. Kabadi. 2009. „A review of applications of cavitation in biochemical engineering/biotechnology”. Biochemical Engineering Journal 44: 60-72.
  • [12] Gutiérrez-Mosquera Luis F., Arias-Giraldo Sebastián, and Zuluaga-Meza Alejandro. 2022. „Landfill leachate treatment using hydrodynamic cavitation: exploratory evaluation". Heliyon 8(3) (2022): e09019.
  • [13] Hassan Shady S., Williams Gwilym A., Jaiswa Amit K. 2018. „Emerging technologies for the pretreatment of lignocellulosic biomass”. Bioresource technology 262: 310-318.
  • [14] Ho Mun Chun, Victor Zhenquan Ong, Ta Yeong Wu. 2019. „Potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization - A review”. Renewable and Sustainable Energy Reviews 112: 75-86.
  • [15] Kainthola Jyoti, Ajay S. Kalamdhad, Vaibhav V. Goud. 2019. „A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques” Process Biochemistry 84: 81-90.
  • [16] Katariya Prateek, Shalini Subhash Arya, Aniruddha Bhalchandra Pandit. 2020 „Novel, non-thermal hydrodynamie cavitation of orange juice: Effects on physical properties and stability of bioactive compounds”. Innovative Food Science and Emerging Technologies 62: 102364.
  • [17] Lalwani Jitesh, Ashutosh Gupta, Shashidhar Thatikonda, Ch. Subrahmanyam. 2020. „Oxidative treatment of crude pharmaceutical industry effluent by hydrodynamic cavitation”. Journal of environmental chemical engineering 8: 104281.
  • [18] Lebiocka Magdalena, Agnieszka Montusiewicz, Sylwia Pasieczna-Patkowska, Sławomir Gułkowski. 2021. „Mature Landfill Leachate as a Medium for Hydrodynamic Cavitation of Brewery Spent Grain". Energies 14(4): 1150.
  • [19] Lebiocka Magdalena. 2020. „Application of Hydrodynamic Cavitation to Improve the Biodegradability of Municipal Wastewater”. Journal of Ecological Engineering 21: 155-160.
  • [20] Metcalf & Eddy lnc., George Tchobanoglous, Franklin L. Burton, Ryujiro Tsuchihashi, H. David Stensel. 2013. Wastewater Engineering: Treatment and Resource Recovery. 5th ed. New York, NY: McGraw-Hill Professional.
  • [21] Montusiewicz Agnieszka, Sylwia Pasieczna-Patkowska, Magdalena Lebiocka, Aleksandra Szaja, Monika Szymańska-Chargot. 2017. „Hydrodynamic cavitation of brewery spent grain diluted by wastewater”. Chemical Engineering Journal 313: 946-956.
  • [22] Olatunji, O., Akinlabi, S., Madushele, N. 2020. „Application of Lignocellulosic Biomass (LCB). In: Daramola, M., Ayeni, A. (eds) Valorization of Biomass to Value-Added Commodities”. Green Energy and Technology. Springer, Cham.
  • [23] Ozonek Janusz. 2010. „Zastosowanie zjawiska kawitacji hydrodynamicznej w inżynierii środowiska”. Polska Akademia Nauk, Komitet inżynierii środowiska, Monografie nr 87.
  • [24] Padoley K. V., Virendra Kumar Saharan, Sandeep Narayan Mudliar, R. A. Pandey, Aniruddha Bhalchandra Pandit. 2012. „Cavitationally induced biodegradability enhancement of a distillery wastewater”. Journal of hazardous materials 219-220: 69-74.
  • [25] Paris Bas, Foteini Vandorou, Dimitrios Tyris, Athanasios T. Balafoutis, Konstantinos Vaiopoulos, George Kyriakarakos, Dimitris Manolakos, George Papadakis. 2022. „Energy Use in the EU Livestock Sector: A Review Recommending Energy Efficiency Measures and Renewable Energy Sources Adoption”. Applied Sciences 12(4): 2142.
  • [26] Prado Carina Aline, Felipe Antônio Fernandes Antunes, Thalita Rocha, Salvador Sánchez-Muñoz, Fernanda Gonçalves Barbosa, R. Terán-Hilares, Mónica María Cruz-Santos, Gevanil Lene Arruda, Silvio S. da Silva and J. C. Santos. 2021. „A review on recent developments in hydrodynamic cavitation and advanced oxidative processes for pretreatment of lignocellulosic materials”. Bioresource technology 345: 126458.
  • [27] Roohinejad Shahin, Mohamed Koubaa, Francisco Jose Barba, Ralf Greiner, Vibeke Orlien and Nikolai I. Lebovka. 2016. „Negative pressure cavitation extraction: A novel method for extraction of food bioactive compounds from plant materials”. Trends in Food Science and Technology 52: 98-108.
  • [28] Singh Sanyukta, Shrikant Bhausaheb Randhavane. 2022. „Hydrodynamic Cavitation: Its optimization and potential application in treatment of Pigment Industry Wastewater”. Materials Today: Proceedings 61 (2): 523-529.
  • [29] Sun Xun, Shuai Liu, Xinyan Zhang, Yang Tao, Grzegorz Boczkaj, Joon Yong Yoon and Xiaoxu Xuan. 2021. „Recent advances in hydrodynamic cavitation-based pretreatments of lignocellulosic biomass for valorization”. Bioresource technology 345, 126251.
  • [30] Terán Hilares Ruly, Júlio César dos Santos, Muhammad Ajaz Ahmed, Seok Hwan Jeon, Silvio S. da Silva, Jong-ln Han. 2016. „Hydrodynamic cavitation-assisted alkaline pretreatment as a new approach for sugarcane bagasse biorefineries”. Bioresource technology 214: 609-614.
  • [31] Thakkar Kartik, Surendra Singh Kachhwaha, Pravin V. Kodgire. 2022. „Multi-response optimization of transesterification reaction for biodiesel production from castor oil assisted by hydrodynamic cavitation”. Fuel 308: 121907.
  • [32] Thamizhakaran Stanley, Jason, Amudha Thanarasu, P. Senthil Kumar, Karthik Periyasamy, Subramanian Raghunandhakumar, Premkumar Manickam Periyaraman, Kubendran Devaraj, Anuradha Dhanasekaran and Sivanesan Subramanian. 2022. „Potential pre-treatment of lignocellulosie biomass for the enhancement of biomethane production through anaerobic digestion - A review”. Fuel 318: 123593.
  • [33] Velvizhi G., Balakumar K., Shetti N. P., Ahmad E., Kishore Pant, K., Aminabhavi, T. M. 2021. „Integrated Biorefinery Processes for Conversion of Lignocellulosic Biomass to Value Added Materials: Paving a Path Towards Circular Economy”. Bioresource technology 343: 126151.
  • [34] Wang Fangqi, Denghao Ouyang, Ziyuan Zhou, Samuel J. Page, De-hua Liu, Xuebing Zhao. 2021. „Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage”. Journal of Energy Chemistry 57: 247-280.
  • [35] Wang Xi-kui, Yong Zhang. 2009. „Degradation of alachlor in aqueous solution by using hydrodynamic cavitation”. Journal of hazardous materials 161(1): 202-7.
  • [36] Wang, Baowei, Huijuan Su, Bojin Zhang. 2021. „Hydrodynamic cavitation as a promising route for wastewater treatment - A review”. Chemical Engineering Journal 412: 128685.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2ea465ae-31cb-48f5-89ad-cef81f961f18
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.