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 Abstract 

The objective of this study is to optimize the fabrication factors of a consumer-grade fused filament 

fabrication (FFF) system. The input factors were nozzle temperature, bed temperature, printing speed, 

and layer thickness. The optimization aims to minimize average surface roughness (Ra) indicating the 

surface quality of benchmarks. In this study, Ra was measured at two positions, the bottom and top 

surface of benchmarks. For the fabrication, the material used was the Polylactic acid (PLA) filament. 

A response surface method (RSM), central composite design (CCD), was utilized to carry out the 

optimization. The analysis of variance (ANOVA) was calculated to explore the significant factors, 

interactions, quadratic effect, and lack of fit, while the regression analysis was performed to determine 

the prediction equation of Ra. The model adequacy checking was conducted to check whether the 

residual assumption still held. The total number of thirty benchmarks was fabricated and measured 

using a surface roughness tester.  For the bottom surface, the analysis results indicated that there was 

the main effect from only one factor, printing speed. However, for the top surface, the ANOVA signi-

fied an interaction between the printing speed and layer thickness. The optimal setting of these factors 

was also recommended, while the empirical models of Ra at both surface positions were also pre-

sented. Finally, an extra benchmark was fabricated to validate the empirical model.  
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1. Introduction 

One of the rapid prototyping (RP) techniques is the fused 

deposition modelling (FDM) or fused filament fabrication 

(FFF) method. Due to the FFF method, three-dimensional 

(3D) models were produced by depositing the melted material 

on the bed layer by layer to create the models' profile. Re-

cently, the popularity of FFF seems to have increased signifi-

cantly. One of the main reasons is the price of FFF systems 

which is currently affordable. As a result, there are many FFF 

system manufacturers which offer the customer-grade 3D 

printers. The main material of the FFF method is the polymer 

filaments, and Acrylonitrile butadiene styrene (ABS) is 

widely used because of its mechanical properties. Anyway, 

Polylactic acid (PLA) is another material that lately gained 

popularity because it is organically disposable and environ-

mentally friendly. However, many properties of PLA are dif-

ferent from those of ABS; therefore, the insight understanding 

of PLA properties, and the characterization of FFF systems are 

important to enhance fabrication performance. 

Regarding FFF process, a number of studies were conducted 

to determine the effect of different factors on surface quality. 

Armillotta (2006) studied the surface quality of different 

benchmarks manufactured on FDM system. The effect of sur-

face patterns, different benchmark sizes, and aspect sizes was 

inspected to optimize the surface quality. Pandey and Reddy 

(2007) proposed the idea of improving the surface quality of 

finished parts fabricated by FDM system. The manufacturing 

technique used was the integration of lathe machine with 

FDM. The characterization of hybrid-FDM system led to the 

minimization of the parts’ average surface roughness. Ahn et 

al. (2009) developed the expression of average surface rough-

ness in the form of surface angles based on the empirical data. 

Turner and Gold (2015) reviewed studies regarding FDM pro-

cesses. The responses were dimensional accuracy, resolution, 

and surface roughness. The important conclusion was that 
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layer thickness had a significant impact on the value of surface 

roughness. Rahmati and Vahabli (2015) indicated that the slic-

ing process and the tessellation of CAD models were the most 

important factor affecting surface quality. They also deter-

mined the accurate model to predict surface roughness by ad-

justing parameters based on the minimum average percentage 

error (MAPE) obtained in each setting condition. Li et al. 

(2017) carried out a comprehensive study on the effect of man-

ufacturing techniques, namely Polyjet, FDM, and stereo-

lithography (SLA), and types of materials, PLA, ABS, resin, 

Veroclear, and digital material. Other studied factors were 

layer thickness and infill density, while the response was sur-

face roughness. Dewey and Ulutan (2017) utilized laser pol-

ishing technique to improve the quality of surface finish. The 

test parts were fabricated by FDM method, and the type of 

materials used was PLA. The results showed that average sur-

face roughness was uniformed and fluctuated in a narrow 

range. Chohan and Singh (2017) studied the pre-and post-pro-

cessing methods affecting the surface characteristics of test 

specimens. Input parameters were air gap, contour width, ras-

ter angle, raster width, and layer thickness for the pre-pro-

cessing technique, while an output was surface roughness. 

Kim et al. (2018) performed a study on the surface roughness 

of FDM-fabricated parts. The effect of two types of parame-

ters, fabrication (distance between nozzle and substrate, in-

flow speed of filament, and moving speed of heating nozzle) 

and extrusion (thickness, width, and the shape of cross section 

area), on surface roughness were experimentally analyzed.  

Pérez et al. (2018) assessed the performance of FDM on test 

samples made of PLA filament. The study results indicated 

that layer height and wall thickness had an important effect on 

surface roughness. Another important finding was that print-

ing path, printing speed, and temperature had no clear impact 

on surface quality. The statistical methods used were 

ANOVA, graphical representation, and non-parametric test. 

Tiwari and Kumar (2018) conducted a study to characterize an 

FDM system that was supplied with PLA filament. The anal-

ysis focused on the input factors (i.e., orientation, support, and 

gravity) and the dimensional accuracy of benchmarks. Taufik 

and Jain (2016) proposed a geometrical representation of 

workpieces with build edge profiles, and there were three 

types of profiles, perimeter-based, perimeter and raster-based, 

and raster-based. They also presented different models for de-

termining surface roughness, theoretical models for raster-

based edge and perimeter-based edge profiles and empirical 

model for the combination of both profiles (raster-based and 

perimeter-based). According to Medellin-Castillo and Zara-

goza-Siqueiros (2019), layer thickness was not the only factor 

affecting surface roughness, the examples of other factors 

were types of materials, part and layer orientation, surface an-

gle, distortion, shrinkage, warpage, and complex geometries. 

Another aspect discussed in literature was the application of 

different experimental designs and machine learning methods 

to analyze the effect of input factors on surface roughness. 

Pandey et al. (2003) used fractional factorial method to ana-

lyze the effect of staircase effect on the surface roughness of 

RP parts. A study was carried out by Krolczyk et al. (2014) to 

analyze the surface roughness of workpieces manufactured by 

FDM method. The autocorrelation function and histogram of 

surface roughness were exploited for the analysis. The ad-

vantage of the analysis was the specific focus on the optimized 

conditions leading to achieve the lowest surface roughness. 

An RSM, Q-optimal design, was applied by Mohamed et al. 

(2016) to analyze and determine the mathematical model of 

surface roughness. The parameters of FDM system were layer 

thickness, air gap, raster angle, build orientation, road width, 

and a number of contours, and the surface roughness was des-

ignated as the response. Singh et al. (2017) utilized a design 

of experiment technique, Taguchi design, and the selected 

level design was a three-level design, L9. Benchmarks were 

fabricated using an FDM system, and the material used was 

ABS. The studied responses were the surface roughness and 

dimensional accuracy of benchmarks. To achieve the optimal 

FDM parameters, Peng et al. (2014) conducted a study regard-

ing the effect of input parameters on the response. The inputs 

were line width compensation, extrusion velocity, filling ve-

locity, and layer thickness. The outputs were dimensional er-

ror, warp deformation, and built time. They integrated the sec-

ond-order response methodology with fuzzy inference to 

optimize the responses. Gurrala and Regalla (2014) selected 

CCD to optimize three parameters, build interior, horizontal 

build direction, and vertical build.  There were two responses, 

evaluate strength and volumetric shrinkage, so two objective 

functions were determined. The responses were optimized by 

using genetic algorithm. For other methods, Vahabli and Rah-

mati (2016) used radial basis function neural network 

(RBFNN) method to predict the surface roughness of work-

pieces produced by FDM method. Wu et al. (2018) applied 

different methods, i.e., random forests (RFs), ridge regression 

(RR), least absolute shrinkage and selection operator 

(LASSO), and support vector regression (SVR), to train the 

predictive models for predicting surface roughness. Shirmo-

hammadi et al. (2021) utilized hybrid ANN and particle swarm 

algorithm to optimize a 3D printing process by minimizing 

surface roughness. 

Since surface roughness was an important characteristic of 

benchmarks fabricated by FFF system, it was chosen as the 

response of this study. For the system and material, the se-

lected type of filament was PLA, widely used in the FFF pro-

cess. A consumer-grade FFF unit was utilized as the fabrica-

tion system. The input factors were nozzle temperature, bed 

temperature, printing speed, and layer thickness. The response 

of this study was average surface roughness indicating the 

quality of the surface area.  The focused surface area was not 

only the top position but also the bottom position, since the 

extruded filament was deposited on the print bed. Each layer 

of filament was compressed on the underneath layer. Moreo-

ver, the bottom surface directly contacted the printing bed. In 

contrast, the top surface was built upon the top layer of the 

filament. If the bottom or base layer had a good surface qual-

ity, it would provide a good support for the following layers 

and might influence the overall quality of a workpiece. There-

fore, the roughness of bottom surface should also be mini-

mized to achieve the best surface quality. Moreover, because 

the fabricated parts had more than one surface area, the anal-

ysis of influencing factors on surface roughness should be 
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treated individually.  In this study, these two surface areas, top 

and bottom, were measured and analyzed. Afterward, a re-

sponse surface method, central composite design (CCD), was 

utilized to design the experiment. The effects of input param-

eters on the response were also characterized. These include 

main effect, interaction, and quadratic effect. Polynomial 

equations were modelled to predict the value average surface 

roughness. Eventually, the optimum settings of input factors 

were recommended to minimize average surface roughness at 

both surfaces.  

2. Materials and Methods 

The selected FFF system was the consumer-grade one that 

supported using PLA as the material. It also worked with the 

different types of materials, e.g., ABS. The system was an en-

closed type and was pre-assembled from factory, and it came 

with an automatic bed-leveling. It was equipped with a single 

heating nozzle, and the maximum temperature was 240°C. 

The temperature of the heat plate was also adjusted up to 90°C. 

The smallest layer thickness of the filament extruded from the 

nozzle was 0.1 mm.  The shape of benchmarks was rectangular 

prism that had flat surface on both sides (bottom and top). The 

selected line pattern of the benchmarks was rectilinear shape, 

and infill density was 10 percent. To prevent warping, print 

surface was covered by a printing build surface. The material 

used in this experiment was PLA, which was biodegradable. 

It was a white filament with the diameter of 1.75 mm, and it 

was packed in a spool. The dimensional accuracy was +/- 0.02 

mm. 

The solid model and a benchmark fabricated in this study 

are shown in Fig. 1. The benchmark dimension was 40 

mm*100 mm* 4 mm. To fabricate workpiece, the solid model 

in the form of STL (Standard Tessellation Language) file was 

imported into a software package. Its profile was sliced into 

layers before being exported to a FFF system.  

 

 

Fig. 1. Solid model and a benchmark 

Since the surface roughness was used as the performance 

index of the workpiece quality, the average surface roughness 

was measured at the top and bottom surface. The analysis of 

the response was carried out separately by using an RSM. The 

ANOVA was generated to check the significance of each fac-

tor (main effect, interaction, and quadratic effect), overall 

model, block effect, and lack of fit. Afterwards, the empirical 

models for each response were determined, and the validation 

of the equation was also assessed. The statistical analysis was 

performed by using a design of experiment software, Design 

Expert. 

2.1. Central Composite Design 

RSM is a technique used to optimize the input factors to 

achieve the best response. The selected method in this study 

was CCD introduced by Box and Wilson (1951) and later 

Kiefer and Wolfowitz (1959). This design was able to deter-

mine the quadratic effect for the response. Another advantage 

of this design is the inclusion of the axial points, which de-

pends on the value of  (distance from the center to the axial 

point). Basically, the value of α depends on the specific type 

of factorial designs used (full or fractional). For the full facto-

rial design, the value of α is equal to α = (number of runs)1/4. 

Therefore, if the factorial design is 2k, the value of α will equal 

(2k)1/4. Moreover, CCD has the capability to run the design in 

blocks. When there are two blocks in the design, these could 

be categorized as factorial and center point block and an axial 

point block. In addition, the application of CCD enables the 

checking capability of lack of fit. Finally, based on the analy-

sis, regression equation is determined to predict the response 

variable. For example, if there are two significant factors with 

interaction and quadratic effects, the empirical model for in-

dependent variable (x1 and x2) is determined as follows:  

        𝑦̂ = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏12𝑥12 + 𝑏11𝑥1
2 + 𝑏22𝑥2

2       (1)                                           

where 𝑦̂𝑖 is the predicted value of a response, b0 is the pre-

dicted constant coefficient, b1 and b2 are the predicted linear 

coefficient of x1 and x2, respectively, b11 and b22 are the pre-

dicted quadratic coefficient of x1 and x2, respectively, and b12 

is the predicted interaction coefficient. 

In this study, four factors, printing speed (mm/sec), layer 

thickness (mm), nozzle temperature (C), and bed temperature 

(C), were selected as the inputs. Printing speed was the speed 

when each layer of a benchmark was printed or deposited on 

the printing bed. Nozzle temperature was the temperature that 

the extruder melts the filament before being solidified and de-

posited on the bed. Bed temperature was the temperature of 

a heated bed, while layer thickness is the thickness of the outer 

wall of a benchmark. Regarding the experiment, the levels of 

these factors were coded in five levels. The first two levels 

were -1 and +1 (factorial points), and another is 0 (center 

points). Moreover, there were additional levels (–α and +α) 

that were axial points. Since this design was 24 factorial, the 

value of α was equal to α = (2k)1/4 = (24)1/4 = 2.  As a result, the 

input factors and levels are listed in Table 1. 

Table 1. Factors and the coded levels 

Factor Coded Level 

-2 -1 0 +1 +2 

A: Nozzle Temp. (ºC) 215 220 225 230 235 

B: Bed Temperature (ºC) 75 80 85 90 95 

C: Print. Speed (mm/sec) 40 60 80 100 120 

D: Layer Thickness (mm) 0.1 0.2 0.3 0.4 0.5 
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2.2. Measured Outcomes 

Due to the experiment, there were a total number of thirty 

runs so thirty benchmarks were fabricated. There were two re-

sponses. The first response was the average surface roughness 

at the bottom position, Ra (bottom), and another was the aver-

age surface roughness at the top position, Ra (top). A surface 

roughness tester was used to measure the average surface 

roughness (Ra) of benchmarks. The surface tester used was 

equipped with the stylus, which travelled along a surface. The 

samples of fabricated benchmarks are depicted in Fig. 2. The 

numbers written on the benchmarks indicated the details re-

garding the treatment (first row = nozzle temperature, second-

row = bed temperature, third row = printing speed, and fourth 

row = layer thickness). 

 

Fig. 2. Samples of fabricated benchmarks 

The design matrix and the corresponded results are shown 

in Table 2. The selected design represented 4 factors with 30 

runs composed of factorial design points, axial design points, 

and replicated center points. Moreover, there were two blocks 

(1st block: run 1-20 and 2nd block: run 21-30). The first block 

consisted of factorial design points and center points, and the 

second block was for the axial points. 

Table 2. Design matrix and results 

Ord. Nozzle 

temp 

(C) 

Bed 

temp 

(C) 

Print 

speed 

(mm/s) 

Layer 

thick. 

(mm) 

Ra 

(bottom) 

(µm) 

Ra 

(top) 

(µm) 

1 220 80 60 0.2 5.01 3.62 

2 230 80 60 0.2 7.14 3 

3 220 90 60 0.2 6.51 2.08 

4 230 90 60 0.2 7.11 3.68 

5 220 80 100 0.2 22.7 2.67 

6 230 80 100 0.2 17.32 2.35 

7 220 90 100 0.2 18.34 2.02 

8 230 90 100 0.2 21.3 2.63 

9 220 80 60 0.4 10.79 12.2 

10 230 80 60 0.4 8.62 10.62 

11 220 90 60 0.4 7.31 11.55 

12 230 90 60 0.4 5.48 10.07 

13 220 80 100 0.4 23.3 14.81 

14 230 80 100 0.4 20.1 14.59 

15 220 90 100 0.4 18.76 16.56 

16 230 90 100 0.4 18.55 16.89 

17 225 85 80 0.3 10.05 6.62 

18 225 85 80 0.3 11.86 6.74 

19 225 85 80 0.3 10.41 6.28 

20 225 85 80 0.3 12.95 6.69 

21 215 85 80 0.3 12.22 6.55 

22 235 85 80 0.3 10.92 4.95 

23 225 75 80 0.3 8.63 11.05 

24 225 95 80 0.3 16.28 7.29 

25 225 85 40 0.3 5.19 8.68 

26 225 85 120 0.3 17.7 8.48 

27 225 85 80 0.1 12.12 3.7 

28 225 85 80 0.5 14.28 13.05 

29 225 85 80 0.3 13.07 9.69 

30 225 85 80 0.3 12.01 6.54 

3. Analysis 

3.1. Bottom surface roughness 

For bottom surface, the ANOVA in Table 3 shows that only 

printing speed (C) had a significant effect on Ra (bottom). 

Moreover, the analysis also indicated that the lack of fit was 

not significant, and there was no effect from blocks. There-

fore, the proposed model was adequate enough to explain Ra 

(bottom). 

Table 3. ANOVA for Ra (bottom) 

Source SS df MS F p-value 

Block 5.87 1 5.87 3.94 0.12 

C-Print. Speed 676.49 1 676.49 105.14 < 0.0001 

Residual 173.72 27 6.43 
  

Lack of Fit 167.77 23 7.29 4.9 0.0664 

Pure Error 5.95 4 1.49 
  

Cor Total 856.09 29 
   

 

As a result, the prediction model for Ra (bottom) is deter-

mined as shown in (2).  

 𝑅𝑎 (𝑏𝑜𝑡𝑡𝑜𝑚) = −8.525 + 0.2655 ∙ 𝑃𝑟𝑖𝑛𝑡𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑 (2) 

Another essential step towards the model building was the 

adequacy checking of residual. As a result, normal probability 

plot is presented in Fig. 3, depicting the externally studentized 

residual vs. percent of normal probability. The externally stu-

dentized residual was the difference between the observation 

and its predicted value divided by the estimated variance of 

the difference. The normal probability plot in Fig. 3 shows 

a straight-line pattern indicating there was no violation of re-

sidual assumption. Therefore, the residuals were normally dis-

tributed, so the proposed model was adequate to predict the 

surface roughness effectively. 

The main effect plot is illustrated in Fig. 4 to quantify the 

effect of printing speed on Ra (bottom), when other factors 

were set at the average level as follows: nozzle temperature = 

225°C, bed temperature = 85°C, layer thickness = 0.3 mm. 

According to Fig. 4, the best bottom surface quality was 
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achieved when the printing speed was set at the lowest value 

(60 mm/sec). This result seemed to agree with the suggestion 

that surface quality was improved when printing speed was 

low (Yodo and Dey, 2021). Moreover, if the FFF was operated 

at higher printing speed, Ra (bottom) linearly increased until 

printing speed reached 100 mm/sec. 

 

 
Fig. 3. Normal probability plot of residuals (bottom surface) 

 

 
Fig. 4. Main effect plot of printing speed 

3.2. Top surface roughness 

Due to Ra (top), ANOVA in Table 4 shows that there were 

main effect (printing speed, C) and the interaction between 

printing speed (C) and layer thickness (D). There was no lack 

of fit and block effect. However, it was interesting to note that 

the square root transformation, √𝑅𝑎 + 0.5, was applied to the 

data so that the residual assumption still held. The regression 

equation for Ra (top) is shown in (3) 

 

𝑆𝑞𝑟𝑡 (𝑅𝑎 (𝑡𝑜𝑝) + 0.50)
= 2.603 − 0.0265
∙ 𝑃𝑟𝑖𝑛𝑡𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑 − 0.2556
∙ 𝐿𝑎𝑦𝑒𝑟 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 + 0.1
∙ 𝑃𝑟𝑖𝑛𝑡. 𝑠𝑝𝑒𝑒𝑑 ∙ 𝐿𝑎𝑦𝑒𝑟 𝑡ℎ𝑖𝑐𝑘 

(3) 

Table 4. ANOVA for Ra (top) 

Source SS df MS F p-value 

Block 0.1329 1 0.1329 3.544 0.13 

C-Print. Speed 0.1182 1 0.1182 1.05 0.3146 

D-Layer. Thick. 14.42 1 14.42 128.46 < 0.0001 

CD 0.6413 1 0.6413 5.71 0.0247 

Residual 2.81 25 0.1123 
  

Lack of Fit 2.66 21 0.1265 3.38 0.1228 

Pure Error 0.1498 4 0.0375 
  

Cor Total 18.12 29 
   

 

Normal probability plot is illustrated in Fig. 5. Since it 

showed a straight-line pattern, so it signified that the residuals 

from the prediction model were normally distributed.  There-

fore, there was no violation of residual assumption. 

 

Fig. 5. Normal probability plot of residuals (top surface) 

The contour plot of printing speed (C) and layer thickness 

(D) is presented in Fig. 6. The different contours of Ra (top), 

ranging from 4 to 12 m, were plotted at the different levels 

of printing speed and layer thickness when the nozzle temper-

ature and bed temperature were set at 225°C and 85°C, con-

secutively. For optimization, layer thickness should be set at 

the lowest level to minimize Ra (top). Due to the empirical 

results, if layer thickness was below 0.22 mm, printing speed 
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would be between 70.8 and 100 mm/sec. On the other hand, 

when layer thickness was greater than 0.35 mm, printing speed 

should be set at the low level.   

 

 

Fig. 6. Contour plot of printing speed and layer thickness 

For the theoretical analysis of Ra (top), the obtained results 

were compared to a study by Taufik and Jain (2016) proposing 

the Ra computation model for different build edge profiles to 

predict the surface roughness of workpieces. One of this pro-

file was the raster-based edge that had flat surface in the hori-

zontal direction, and Ra depended on layer thickness (l) and 

edge profile deviation factor perpendicular-to-base-length di-

rection (kh). The deviation in the direction of profile height oc-

curred because of neck-size formation. Therefore, the calcula-

tion of Ra by Taufik and Jain (2016) is shown in (4). 

                                 𝑅𝑎 =
2000

9√3
(𝑙 − 2𝑘ℎ)                         (4) 

According to (4), the increment in layer thickness resulted 

in lower surface quality, and this relationship seemed to agree 

with the empirical study. However, another factor affecting 

the value of Ra was the deviation factor. 

3.3. Validation  

Another important step of the study was the validation of the 

prediction model. A benchmark was fabricated at the follow-

ing conditions, nozzle temperature = 228C, bed temperature 

= 88C, printing speed = 90 mm/sec, and layer thickness = 

0.25 mm, and it was utilized to validate the prediction model.  

As a result, Ra (bottom) and Ra (top) were measured and com-

pared with the prediction results from the empirical models. 

The validation test from Table 5 shows the comparison of the 

responses from the observation and prediction. The results in-

dicated that the values of observed Ra were not significantly 

different from the predict ones, so the prediction model was 

sufficient enough to estimate Ra (bottom) and Ra (top). 

Table 5. Validation results 

Response Obs. S.D. Predict 

Ra (bottom) 19.24 2.54 14.23 

Ra (top) 7.59 1.62 4.6 

4. Conclusions and discussions 

The effect of four input factors, nozzle temperature, bed 

temperature, printing speed, and layer thickness, on the sur-

face roughness, was investigated in this study. The CCD 

method was utilized to characterize the relationship between 

input factors and responses, Ra (bottom) and Ra (top). For Ra 

(bottom), surface roughness was minimized by setting print-

ing speed at the lowest value. However, for Ra (top), there was 

an interaction between printing speed and layer thickness. The 

best surface quality of Ra (top) was achieved when work-

pieces were fabricated with the smallest layer thickness. The 

empirical models for both responses were also presented. Un-

der some circumstances, although it was impossible to run 

a system at the optimal conditions (e.g., lowest printing 

speed), FFF operators were still able to decide what levels of 

printing speed and layer thickness should be. Therefore, the 

acceptable surface roughness was still achieved. 

For discussion, two empirical models obtained in this study 

were derived to predict the values of Ra (bottom) and Ra (top). 

They were based on the empirical results and the CCD 

method. Therefore, since the obtained results were based on 

CCD, it is interesting to compare these results with the ones 

of another RSM, e.g., Box-Behnken. For four factors, Box-

Behnken requires 27 runs which are fewer than those of CCD 

(30 runs). If the validation process shows that Box-Behnken 

is also an effective method, it will be another alternative 

choice of design to be considered. 

Another point of discussion regarding the experiment is the 

effect of other factors on the surface roughness. This study fo-

cuses on the four input factors, nozzle temperature, bed tem-

perature, printing speed, and layer thickness. However, it was 

noticed that, during the experiment, the bed surface was cov-

ered by a printing bed surface sheet to prevent warping and 

led to consistent print adhesion. It might be another factor af-

fecting the surface quality. As a result, a further study should 

be conducted to quantify the effect of different printing build 

surfaces (e.g., blue tape, adhesive tape, glue stick) on the sur-

face finish by adding them as a categorical factor. 
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使用中心复合设计方法降低熔丝制造 (FFF) 工艺中的表面粗糙度 
 

關鍵詞 

平均表面粗糙度  

中央复合设计 

熔丝制造 

 摘要 

本研究的目的是优化消费级熔丝制造 (FFF) 系统的制造因素。输入因素是喷嘴温度、床温、打

印速度和层厚。优化旨在最小化表示基准表面质量的平均表面粗糙度 (Ra)。在这项研究中，

Ra 在两个位置测量，即基准的底部和顶部表面。对于制造，使用的材料是聚乳酸 (PLA) 长

丝。响应面法（RSM），中心复合设计（CCD），被用来进行优化。计算方差分析（ANOVA）以

探索显着因素、交互作用、二次效应和失拟，而进行回归分析以确定Ra的预测方程。进行模型

充分性检查以检查残差假设是否仍然成立。使用表面粗糙度测试仪制作和测量了总共三十个基

准。对于底面，分析结果表明，主要影响因素只有一个，印刷速度。然而，对于顶面，ANOVA 

表示打印速度和层厚度之间的相互作用。还推荐了这些因素的最佳设置，同时还提出了两个表

面位置的 Ra 的经验模型。最后，制作了一个额外的基准来验证经验模型。 

 

 
 


