PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Extraction of rubidium and cesium from brine solutions using a room temperature ionic liquid system containing 18-crown-6

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Application of 1-butyl-3-metyhlimidazaolium hexafl uorophosphate ([C4mim][PF6 ]), in the extraction of rubidium and cesium from brine solutions using 1,4,7,10,13,16-hexaoxacyclooctadecane (18C6) as extractant was investigated. Parameters that affect the extraction including pH of aqueous phase, equilibration time, dosage of the ionic liquid, phase ratio, concentration of 18C6 were studied. Under the optimal conditions, the single extraction effi ciency of rubidium ions and cesium ions were up 84.11% and 94.99%, respectively. The stripping of alkali metal ions from the loaded organic phase with different stripping agents and concentrations were also investigated. The initial value of the K/Cs and K/Rb ratios were 93.0 and 104.3, respectively, which have dropped 91.21% and 88.01%, respectively, after the extraction and stripping experiments. It was taken a big step in the separation and enrichment of cesium (rubidium) ion and potassium ion. The extraction mechanism was revealed most likely to be a cation exchange mode in this system.
Słowa kluczowe
Rocznik
Strony
40--46
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • Chinese Academy of Sciences, Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, 810008 Xining, China
  • Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, 810008 Xining, China
  • University of Chinese Academy of Sciences, 100049 Beijing, China
autor
  • Department of Chemistry, Chongqing Normal University, Chongqing, 400047, China
autor
  • Chinese Academy of Sciences, Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, 810008 Xining, China
  • Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, 810008 Xining, China
  • University of Chinese Academy of Sciences, 100049 Beijing, China
autor
  • Chinese Academy of Sciences, Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, 810008 Xining, China
  • Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, 810008 Xining, China
  • University of Chinese Academy of Sciences, 100049 Beijing, China
autor
  • Chinese Academy of Sciences, Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, 810008 Xining, China
  • Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake Resources, 810008 Xining, China
Bibliografia
  • 1. Arnold, W.D., Crouse, D.J., & Brown, K.B. (1965). Solvent extraction of cesium (and rubidium) from ore liquors with substituted phenols. Industrial & Engineering Chemistry Process Design and Development 4(3), 249–254. DOI: 10.1021/i260015a002.
  • 2. McDowell, W.J., Case, G.N., McDonough, J.A., & Bartsch, R.A. (1992). Selective extraction of cesium from acidic nitrate solutions with didodecylnaphthalenesulfonic acid synergized with bis (tert-butylbenzo)-21-crown-7. Anal. Chem. 64(23), 3013–3017. DOI: 10.1021/ac00047a024.
  • 3. Tsai, S.C., Wang, T.H., Li, M.H., Wei, Y.Y., & Teng, S.P. (2009). Cesium adsorption and distribution onto crushed granite under different physicochemical conditions. J. Hazard. Mater. 161(2), 854–861. DOI:10.1016/j.jhazmat.2008.04.044.
  • 4. Li, Z., Pranolo, Y., Zhu, Z., & Cheng, C.Y. (2017). Solvent extraction of cesium and rubidium from brine solutions using 4-tert-butyl-2-(α-methylbenzyl)-phenol. Hydrometallurgy 171, 1–7. DOI: 10.1016/j.hydromet.2017.03.007.
  • 5. Ding, D., Zhao, Y., Yang, S., Shi, W., Zhang, Z., Lei, Z., & Yang, Y. (2013). Adsorption of cesium from aqueous solution using agricultural residue–Walnut shell: Equilibrium, kinetic and thermodynamic modeling studies. Water Res. 47(7), 2563–2571. DOI: 10.1016/j.watres.2013.02.014.
  • 6. Wang, J., Che, D., & Qin, W. (2015). Extraction of rubidium by t-BAMBP in cyclohexane. Chinese J. Chem. Eng. 23(7), 1110–1113. DOI: 10.1016/j.cjche.2015.04.005.
  • 7. Yang, W.J., Liu, S. M., Li, Y.J., Huang, Y.J., & Luo, X.S. (2013). Process analysis of Rb+ and Cs+ adsorption from salt lake brine by ammonium molybdophosphate composite material. In Advanced Materials Research (Vol. 785, pp. 812–816). Trans Tech Publications. DOI: 10.4028/www.scientific.net/AMR.785-786.812.
  • 8. Liu, S.M., Liu, H.H., Huang, Y.J., & Yang, W.J. (2015). Solvent extraction of rubidium and cesium from salt lake brine with t-BAMBP–kerosene solution. T. Nonferr. Metal. Soc. 25(1), 329–334. DOI: 10.1016/S1003-6326(15)63608-1.
  • 9. Ali, S.M., Joshi, J.M., Deb, A.S., Boda, A., Shenoy, K.T., & Ghosh, S.K. (2014). Dual mode of extraction for Cs+ and Na+ ions with dicyclohexano-18-crown-6 and bis (2-propyloxy) calix [4] crown-6 in ionic liquids: density functional theoretical investigation. RSC Adv. 4(44), 22911–22925. DOI: 10.1039/C4RA02246G.
  • 10. Jianchen, W., Xiaowen, Z., & Chongli, S. (2005). Extracting Performance of Cesium by 25, 27-Bis (2-Propyloxy) alix [4]-26, 28-Crown-6 (iPr-C[4]C-6) in n-octanol. Sep. Sci. Technol. 40(16), 3381-3392. DOI: 10.1080/01496390500423730
  • 11. Visser, A.E., & Rogers, R.D. (2003). Room-temperature ionic liquids: new solvents for f-element separations and associated solution chemistry. J. Solid State Chem. 171(1), 109–113. DOI: 10.1016/S0022-4596(02)00193-7.
  • 12. Shi, C., Jia, Y., Zhang, C., Liu, H., & Jing, Y. (2015). Extraction of lithium from salt lake brine using room temperature ionic liquid in tributyl phosphate. Fusion Eng. Des. 90, 1–6. DOI: 10.1016/j.fusengdes.2014.09.021.
  • 13. Rogers, R.D. (2007). Materials science: reflections on ionic liquids. Nature 447(7147), 917–918. DOI: 10.1038/447917a.
  • 14. Rout, A., Venkatesan, K.A., Srinivasan, T.G., & Rao, P.V. (2011). Extraction and third phase formation behavior of Eu(III) IN CMPO-TBP extractants present in room temperature ionic liquid. Sep. Purif. Technol. 76(3), 238–243. DOI: 10.1016/j.seppur.2010.10.009.
  • 15. Han, J., Wang, Y., Chen, C., Kang, W., Liu, Y., Xu, K., & Ni, L. (2014). (Liquid+ liquid) equilibria and extraction capacity of (imidazolium ionic liquids+ potassium tartrate) aqueous two-phase systems. J. Mol. Liq. 193, 23–28. DOI: 10.1016/j.molliq.2013.12.022.
  • 16. Welton, T. (1999). Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99(8), 2071–2084. DOI: 10.1021/cr980032t.
  • 17. Pandey, S. (2006). Analytical applications of roomtemperature ionic liquids: A review of recent efforts. Anal. Chim. Acta 556(1), 38–45. DOI: 10.1016/j.aca.2005.06.038.
  • 18. Shi, C., Duan, D., Jia, Y., & Jing, Y. (2014). A highly efficient solvent system containing ionic liquid in tributyl phosphate for lithium ion extraction. J. Mol. Liq. 200, 191–195. DOI: 10.1016/j.molliq.2014.10.004.
  • 19. Shang-Qing, C.H.E.N., Meng-Xue, W.A. N.G., Long, L.I., Ya-Fei, G.U.O., Xiao-Ping, Y.U., & Tian-Long, D.E.N.G. (2017). Recovery of Rubidium and Cesium from Brines by Solvent Extraction. DEStech Transactions on Materials Science and Engineering, DOI: 10.12783/dtmse/icmsea/mce2017/10798.
  • 20. Luo, H., Dai, S., Bonnesen, P.V., Buchanan, A.C., Holbrey, , Bridges, N.J., & Rogers, R.D. (2004). Extraction of cesium ions from aqueous solutions using calix [4] arene-bis (tert-octylbenzo-crown-6) in ionic liquids. Anal. Chem. 76(11), 3078–3083. DOI: 10.1021/ac049949k.
  • 21. Dai, S., Ju, Y.H., & Barnes, C.E. (1999). Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids. J. Chem. Soc., Dalton Trans. (8), 1201-1202. DOI: 10.1039/A809672D.21/22. Visser, A.E., et al. (2003). Uranyl coordination environment in hydrophobic ionic liquids: an in situ investigation. Inorg. Chem. 42(7), 2197–2199. DOI: 10.1021/ic026302e.
  • 22. Visser, A.E., Jensen, M.P., Laszak, I., Nash, K.L., Choppin, G.R., & Rogers, R.D. (2003). Uranyl coordination environment in hydrophobic ionic liquids: an in situ investigation. Inorg. Chem. 42(7), 2197–2199. DOI: 10.1021/ic026302e.
  • 23. Zhang, N., Gao, D.L., Liu, M.M., & Deng, T.L. (2014). Rubidium and Cesium Recovery from Brine Resources. In Adv. Mater. Res. (Vol. 1015, pp. 417–420). Trans Tech Publications.
  • 24. Horwitz, E.P., Dietz, M.L., & Fisher, D.E. (1990). Extraction of strontium from nitric acid solutions using dicyclohexano-18-crown-5 and its derivatives. Solvent Extr. Ion Exc. 8(4–5), 557–572. DOI: 10.1080/07366299008918017.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e900659-25dd-4668-8990-485e24727325
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.