PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Removing Aggressive Carbon Dioxide From Water Using Melaphyre Bed

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The experiment was based on filtration of the highly aggressive water through the melaphyre bed. The quartz bed was non-reactive reference material. The aim of this work was to determine the ability of the melaphyre to remove aggressive CO2 during the chemical reaction. It was noted that a decrease of acidity of the filtrate in comparison to the feed and an increase of its alkalinity and pH. It was calculated that until the moment of exhaustion of the de-acidifying properties of the melaphyre, maximum amount of bound CO2 added to the water was 29.7 g CO2 /L of the bed, and maximum amount of the aggressive CO2 removed from the water was 33.3 g CO2 /L of the bed. Regarding very high content of the aggressive CO2 (116 mg/L average) in the feed only 28.76% of this component was subject to transformation into bound and affiliated CO2 in the filtrate. For the melaphyre bed the CO2 loss from the experiment system following from desorption was 7.80% of the total load of CO2 added with the feed. On the quartz bed the loss was slightly lower 4.56%.
Słowa kluczowe
Rocznik
Strony
186--191
Opis fizyczny
Bibliogr. 15 poz., tab., rys.
Twórcy
autor
  • Department of Civil Engineering, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warszawa, Poland
autor
  • Department of Civil Engineering, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warszawa, Poland
autor
  • Department of Civil Engineering, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warszawa, Poland
autor
  • Department of Civil Engineering, Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warszawa, Poland
Bibliografia
  • 1. Dąbrowski W., Buchta R., Dąbrowska B., Mackie R.I. 2010. Calcium carbonate equilibria in water supply systems. Environment Protection Engineering, 36(2), 75–94.
  • 2. Gomółkowie B. and E. 1992. Laboratory exercises of water chemistry. Wydawnictwo Politechniki Wrocławskiej, Wrocław. (in Polish)
  • 3. Jaeger Y., Oberti S., Guichot L., Baron J. 2006. Evaluation of treatment methods to reduce the corrosivity of soft waters. Water Science and Technology: Water Supply, 6(5), 101–110.
  • 4. Kordylewski W., Sawicka D., Falkowski T. 2013. Laboratory tests on the efficiency of carbon dioxide capture from gases in NaOH solutions. Journal of Ecological Engineering, 14(2), 54–62.
  • 5. Kowal A.L., Świderska-Bróż M. 2009. Water treatment. PWN, Warszawa. (in Polish)
  • 6. Michel M.M., Siwiec T., Reczek L., Wereda N. 2015. Water deacidification using malaphire, dolomite and hydrolite. Instal, 362(5), 56–59. (in Polish)
  • 7. Michel M. M., Reczek L., Siwiec T., Wereda N. 2016. Effect of heat treatment on water deacidifying properties of melaphyre, Ochrona Środowiska, 38(3), 49–52. (in Polish)
  • 8. Murzyn P., Dyczek J. 2009. The role of melaphyre as a raw material additive in technology of ceramic building materials. Materiały Ceramiczne, 61(1), 16–20. (in Polish)
  • 9. Reczek L., Michel M.M., Siwiec T., Nowak P. 2014. Deacidification of water taken in the water supply station in Sreoczyn. Instal, 356(11), 76–80. (in Polish)
  • 10. Stolecki J., Murzyn P. 2011. Influence of firing conditions on properties of ceramic materials made of carbon slate, Materiały Ceramiczne, 63(1), 74–79.
  • 11. Stolecki J., Murzyn P., Brylska E. 2011. Characteristics of carbon clay shale from the Lublin Coal Basin (LCB) and technological additives designed for the clinker production. Part I. Materiały Ceramiczne, 63(1), 175–185. (in Polish)
  • 12. Wolska M., Świderska-Bróż M. 2008. Contamination of tap water with products of iron corrosion. Gaz, Woda i Technika Sanitarna, 4, 17–20. (in Polish)
  • 13. Wolska M., Mołczan M. 2015. Stability assessment of water introduced into the water supply network. Ochrona Środowiska, 37(4), 51–56. (in Polish)
  • 14. Zymon W. 2007. The use of the aeration process for the desorption of carbon dioxide from surface water: a case study. Ochrona Środowiska, 29(4), 65–68. (in Polish)
  • 15. Żaba J. 2003. Illustrated dictionary of rocks and minerals. Videograf II, Katowice. (in Polish)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e8fb123-950b-447f-beb8-343a44d746d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.