PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CFD simulations of heat transfer in internally helically ribbed tubes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heating surfaces in power boilers are exposed to very high hea t flux. For evaporator protection against overheating, internally helically ribbed tubes are used. The intensification of the heat transfer and the maintenance of the thin water layer in the intercostal space, using ribbed tubes, enables better protection of the power boiler evaporator than smooth pipes. Extended inner surface changes flow and thermal conditions by influencing the linear pressure drop and heat transfer coefficient. This paper presents equations that are used to determine the heat transfer coefficient. The results of total heat transfer, obtained from CFD simulations, for two types of internally ribbed and plain tubes are also presented.
Rocznik
Strony
251--260
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Cracow University of Technology, al. Jana Pawla II 37, 31-864 Cracow, Poland
autor
  • Cracow University of Technology, al. Jana Pawla II 37, 31-864 Cracow, Poland
Bibliografia
  • 1. Ansys Inc. (www.ansys.com).
  • 2. Carnavos T., 1980. Heat transfer performance of internally finned tubes in turbulent flow. Heat Transfer Eng., 1, 32-37. DOI: 10.1080/01457638008939566.
  • 3. Dzierwa P., Taler D., Taler J., Trojan M., 2014. Optimum heating of thick wall pressure components of steam boilers. ASME 2014 Power Conference, Baltimore, United States, 28-31 July 2014. Paper No. POWER2014-32080. DOI: 10.1115/POWER2014-32080.
  • 4. Dzierwa P. Taler J., 2015. Optimum heating of pressure vessels with holes. J. Pressure Vessel Technol., 137, 011202-011202-8. DOI: 10.1115/1.4027584.
  • 5. Grądziel S., 2011. Determination of temperature and thermal stresses distribution in power boiler elements with use inverse heat conduction method. Arch. Thermodyn., 32, 191-200. DOI: 10.2478/v10173-011-0022-4.
  • 6. Jensen M., Vlakancic A., 1999. Experimental investigation of turbulent heat transfer and fluid flow in internally finned tubes. Int. J. Heat Mass Transfer, 42, 1343-1351. DOI: 10.1016/S0017-9310(98)00243-9.
  • 7. Majewski K., 2013. Concept of a measurement and test station for determining linear pressure drop and heat transfer coefficient of internally ribbed tubes. J. Power Technol., 93 (5), 340-346.
  • 8. Modliński N.J., 2014. Computational modelling of a tangentially fired boiler with deposit formation phenomena. Chem. Process Eng., 35, 361-358. DOI: 10.2478/cpe-2014-0027.
  • 9. Nowak-Woźny D., Moroń W., Urbanek B., Rybak W., 2013. Mineral matter transformation in oxy-fuel coal combustion. Chem. Process Eng., 34, 393-401. DOI: 10.2478/cpe-2013-0032.
  • 10. Ocłoń P., Nowak M., Łopata S., 2014. Simplified numerical study of evaporation processes inside vertical tubes. J. Therm. Sci., 23, 177-186. DOI: 10.1007/s11630-014-0693-7.
  • 11. Ocłoń P., Nowak M., Majewski K., 2013. Numerical simulation of water evaporation inside vertical circular tubes. 11th International Conference of Numerical Analysis and Applied Mathematics, Rhodes, Greece, 21-27 September 2013. AIP Conf. Proc., 1558, 2419-2422, DOI: 10.1063/1.4826029.
  • 12. Pan J., Yang D., Dong Z., Zhu T., Bi Q., 2011. Experimental investigation on heat transfer characteristics of low mass flux rifled tube with upward flow. Int. J. Heat Mass Transfer, 54, 2952-2961. DOI: 10.1016/j.ijheatmasstransfer.2011.03.002.
  • 13. Pilarczyk M., Cisek P., 2014. Possibility of coal power plants dynamics properties improvement in the context of increasing RES contribution in Polish power supply system (in Polish). Rynek Energii, 6 (115), 16-24.
  • 14. Taler D., Trojan M., Taler J., 2014. Mathematical modeling of cross-flow tube heat exchangers with a complex flow arrangement. Heat Transfer Eng., 35, 1334-1343. DOI: 10.1080/01457632.2013.876874.
  • 15. Taler J. (Ed.), 2011. Procesy cieplne i przepływowe w dużych kotłach energetycznych. PWN, Warszawa, 14-16.
  • 16. Taler J., Duda P., Węglowski B., Zima W., Grądziel S., Sobota T., Taler D., 2009. Identification of local heat flux to membrane water-walls in steam boilers. Fuel, 88, 305-311. DOI: 10.1016/j.fuel.2008.08.011.
  • 17. Trojan M., Taler D., Taler J., Dzierwa P., 2014. Modeling of superheater operation in a steam boiler. ASME 2014 Power Conference, Baltimore, United States, 28-31 July 2014. Paper No. POWER2014-32093. DOI: 10.1115/POWER2014-32093.
  • 18. Wacławiak K., Kalisz S., 2014. Influence of selected parameters on ash particle trajectories when modelling deposition on superheater tubes in pulverised coal boilers using Fluent code. Chem. Process Eng., 35, 305-316. DOI: 10.2478/cpe-2014-0023.
  • 19. Webb R.L., Narayanamurthy R., Thors P., 2000. Heat transfer and friction characteristics of internal helical-rib roughness. J. Heat Transfer, 122, 134-142. DOI: 10.1115/1.521444.
  • 20. Węglowski B., Ocłoń P., Majcher A., 2014. Monitoring of the stress state in the boiler drum using finite element method. Advanced Materials Research, 875-877, 1176-1182. DOI: 10.4028/www.scientific.net/AMR.875-877.1176.
  • 21. Zdaniuk G., Chamra L., Mago P., 2008. Experimental determination of heat transfer and friction in helically-finned tubes. Exp. Therm Fluid Sci., 32, 761-765. DOI: 10.1016/j.expthermflusci.2007.09.006.
  • 22. Zima W., 2006. Simulation of dynamics of a boiler steam superheater with an attemperator. Proc. Inst. Mech. Eng., Part A: J. Power Energy, 220, 79-801. DOI: 10.1243/09576509JPE268.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e8cfa11-0d31-4cef-a393-a92fa23848aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.