Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Model stochastyczny kwalifikacji i optymalizacji wpływu ryzyka operacyjnego na zrównoważony rozwój korporacyjny z wykorzystaniem symulacji Monte Carlo
Języki publikacji
Abstrakty
Operational risk has been widely studied, and international guidelines provide procedures for the correct management of operational risk; however, this has not been studied from a corporate sustainability point of view. Therefore, this work seeks to find a way to model and optimize the impact of operational risks on corporate sustainability. The methodology used is based on the assignment of two distribution functions for the creation of a probabilistic model that allows quantifying the probability of occurrence (frequency) and the expected monetary impact (severity) on the sustainability variables (environmental, social, and economic). The result is a statistical convolution through Monte Carlo simulation, which makes it possible to quantify aggregate losses to finally make an optimization process of the variables and estimate the financial impact. Therefore, this study extends the literature on risk quantification, proposing a stochastic model that quantifies and optimizes the operational risks that are related to corporate sustainability. The proposed model offers a practical way to quantify operational risks related to corporate sustainability while also being flexible, as it does not require historical information and can be used with data collected from the company based on the proposed probability distributions. Finally, the proposed model has three limitations: the distribution functions, use of Solver (Excel), and exclusion of some risk management strategies, which future research can consider.
Ryzyko operacyjne zostało szeroko zbadane, a międzynarodowe wytyczne dostarczają procedur do prawidłowego zarządzania ryzykiem operacyjnym; jednakże nie badano tego z punktu widzenia zrównoważonego rozwoju przedsiębiorstwa. Dlatego też niniejsza praca ma na celu znalezienie sposobu modelowania i optymalizacji wpływu ryzyka operacyjnego na zrównoważony rozwój przedsiębiorstwa. Zastosowana metodologia opiera się na przypisaniu dwóch funkcji rozkładu w celu stworzenia modelu probabilistycznego, który pozwala kwantyfikować prawdopodobieństwo wystąpienia (częstotliwość) i oczekiwany monetarny wpływ (ciężkość) na zmienne zrównoważone (środowiskowe, społeczne i ekonomiczne). Rezultatem jest statystyczna konwolucja poprzez symulację Monte Carlo, który umożliwia ilościowe określenie zagregowanych strat, aby ostatecznie przeprowadzić proces optymalizacji zmiennych i oszacować wpływ finansowy. Dlatego też niniejsze badanie poszerza literaturę w obszarze kwantyfikacji ryzyka, proponując model stochastyczny, który kwantyfikuje i optymalizuje ryzyko operacyjne związane ze zrównoważonym rozwojem przedsiębiorstwa. Proponowany model oferuje praktyczny sposób ilościowego określenia ryzyk operacyjnych związanych ze zrównoważonym rozwojem przedsiębiorstwa, a jednocześnie jest elastyczny, ponieważ nie wymaga informacji historycznych i może być stosowany w połączeniu z danymi zebranymi z przedsiębiorstwa w oparciu o proponowane rozkłady prawdopodobieństwa. Wreszcie proponowany model ma trzy ograniczenia: funkcje rozkładu, użycie Solvera (Excel) i wykluczenie niektórych strategii zarządzania ryzykiem, które mogą zostać uwzględnione w przyszłych badaniach.
Czasopismo
Rocznik
Tom
Strony
59--75
Opis fizyczny
Bibliogr. 58 poz., rys.
Twórcy
autor
- Faculty of Economic and Administrative Sciences, Universidad de Medellín, Antioquia, Colombia
autor
- Faculty of Mechanical Engineering, University of Pretoria, Pretoria, South Africa
autor
- Universidad de Medellin, Antioquia, Colombia
autor
- Faculty of Engineering, Universidad de Medellín, Antioquia, Colombia
Bibliografia
- 1.Andersen, L. B., Häger, D., (2010). An event classification scheme for causal modeling of operational risk in the financial industry. Reliability, Risk and Safety: Back to the Future, 2213-2220.
- 2.Beltrán-Beltrán, J. I., O’Reilly, F. J., (2019). On goodness of fit tests for the Poisson, negative binomial and binomial distributions. Statistical Papers, 60(1), 1-18.
- 3.Bertsch, S., Schmidt, M. and Nyhuis, P., (2014). Modeling of lateness distributions depending on the sequencing method with respect to productivity effects. CIRP Annals - Manufacturing Technology, 63(1), 429-432.
- 4.Capone, C., Narbaev, T., (2022). Estimation of Risk Contingency Budget in Projects using Machine Learning. IFAC-PapersOnLine, 55(10), 3238-3243.
- 5.Chang, H. K., Yu, W. der, Cheng, S. T. and Cheng, T. M., (2019). The Use of a Multiple Risk Level Model to Tackle the Duration of Risk for Construction Activity. KSCE Journal of Civil Engineering, 23(6), 2397-2408.
- 6.Chang, H.-K., Yu, W.-D. and Cheng, S.-T., (2018). A new project scheduling method based on activity risk duration and systems simulation. Journal of Technology, 33(1), 1-16.
- 7.Channell, D. E., (1989). Problem solving with simulation. Journal of Chemical Information and Modeling, 53(9), 713-720.
- 8.Chen, H., Zhao, X., (2022). Green financial risk management based on intelligence service. Journal of Cleaner Production, 364.
- 9.Chen, Y., Patelli, E., Zeng, P., Edwards, B., Li, T. and Beer, M., (2020, November). Decision making for optimal primary-support selection to minimise tunnel-squeezing risk. In 30th European Safety and Reliability Conference, ESREL 2020 and 15th Probabilistic Safety Assessment and Management Conference, PSAM 2020 (pp. 2257-2264).
- 10.Cornalba, C., Giudici, P., (2004). Statistical models for operational risk management. Physica A: Statistical Mechanics and Its Applications, 338(1), 166-172.
- 11.Cousin, A., Jiao, Y., Robert, C. Y. and Zerbib, O. D., (2016). Asset allocation strategies in the presence of liability constraints. Insurance: Mathematics and Economics, 70, 327-338.
- 12.Cruz, J. M., (2009). The impact of corporate social responsibility in supply chain management: Multicriteria decision-making approach. Decision Support Systems, 48(1), 224-236.
- 13.Cruz, M., (2006). Chapter 14 - Developing a Framework for Operational Risk Analytics. In M. K. Ong (Ed.), Risk Management (pp. 295-307).
- 14.Academic Press. Elbatal, I., Ahmed, A. N. and Ahsanullah, M., (2010). Characterizations of discrete ditributions by the reversed hazard rate. Journal of Applied Statistical Science, 18(2), 269-279.
- 15.Finger, M., Gavious, I. and Manos, R., (2018). Environmental risk management and financial performance in the banking industry: A cross-country comparison. Journal of International Financial Markets, Institutions and Money, 52, 240-261.
- 16.Forcael, E., González, M., Soto, J., Ramis, F. and Rodríguez, C., (2018). Simplified scheduling of a building construction process using discrete event simulation. Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology, 2018-July.
- 17.Gkogka, E., Reij, M. W., Gorris, L. G. M. and Zwietering, M. H., (2013). Risk assessment strategies as a tool in the application of the Appropriate Level of Protection (ALOP) and Food Safety Objective (FSO) by risk managers. International Journal of Food Microbiology, 167(1), 8-28.
- 18.Griffy-Brown, C., Miller, H., Zhao, V., Lazarikos, D. and Chun, M., (2019). Emerging Technologies and Risk: How Do We Optimize Enterprise Risk When Deploying Emerging Technologies? 2019 IEEE Technology and Engineering Management Conference (TEMSCON), 1-5.
- 19.Hajdu, M., Bokor, O., (2016). Sensitivity analysis in PERT networks: Does activity duration distribution matter? Automation in Construction, 65, 1-8.
- 20.Hoang, D., Ruckes, M., (2017). Corporate risk management, product market competition, and disclosure. Journal of Financial Intermediation, 30, 107-121.
- 21.Hosny, H. E., Ibrahim, A. H. and Fraig, R. F., (2018). Risk management framework for Continuous Flight Auger piles construction in Egypt. Alexandria Engineering Journal, 57(4), 2667-2677.
- 22.Hui, L. T., Fatt, Q. K., (2007). Strategic organizational conditions for risks reduction and earnings management: A combined strategy and auditing paradigm. Accounting Forum, 31(2), 179-201.
- 23.Hussain, T., (2020). A zero truncated discrete distribution: Theory and applications to count data. Pakistan Journal of Statistics and Operation Research, 16(1), 167-190.
- 24.Jaco, J. C. E., Galarza, C. M. L., Venero, R. M. and Quispe, J. A. D., (2021). Monte carlo simulation in a peruvian highway. Civil Engineering and Architecture, 9(6), 1727-1734.
- 25.Jayasree, G., Swamy, R. J. R., (2006). Some new discrete probability distributions derived from power series distributions. Communications in Statistics - Theory and Methods, 35(9), 1555-1567.
- 26.Kerim, K., Zeynep, I., (2021). Assessment of Urban Flood Risk Factors Using Monte Carlo Analytical Hierarchy Process. Natural Hazards Review, 22(4), 04021048.
- 27.Keshk, A. M., Maarouf, I. and Annany, Y., (2018). Special studies in management of construction project risks, risk concept, plan building, risk quantitative and qualitative analysis, risk response strategies. Alexandria Engineering Journal, 57(4), 3179-3187.
- 28.Kirk, R., (2019). Experimental design. EEG Signal Processing and Feature Extraction, 43-69.
- 29.Klenke, A., Mattner, L., (2010). Stochastic ordering of classical discrete distributions. Advances in Applied Probability, 42(2), 392-410.
- 30.Kouloukoui, D., Marinho, M. M. de O., Gomes, S. M. da S., Kiperstok, A. and Torres, E. A. (2019). Corporate climate risk management and the implementation of climate projects by the world’s largest emitters. Journal of Cleaner Production, 238.
- 31.Laínez, J. M., Puigjaner, L. and Reklaitis, G. V., (2009). Financial and financial engineering considerations in supply chain and product development pipeline management. Computers and Chemical Engineering, 33(12), 1999-2011.
- 32.Le, A. T., Doan, A. T. and Phan, T., (2021). Institutional development and firm risk from a dynamic perspective: Does ownership structure matter? Economic Analysis and Policy, 72, 342-357.
- 33.Liu, X., Shen, L. and Zhang, K., (2021). Estimating the probability distribution of construction project completion times based on drum-buffer-rope theory. Applied Sciences (Switzerland), 11(15).
- 34.Lozano, R., von Haartman, R., (2018). Reinforcing the holistic perspective of sustainability: Analysis of the importance of sustainability drivers in organizations. Corporate Social Responsibility and Environmental Management, 25(4), 508-522.
- 35.Luther, B., Gunawan, I. and Nguyen, N., (2023). Identifying effective risk management frameworks for complex socio-technical systems. In Safety Science (Vol. 158).Elsevier B.V.
- 36.Makarova, V., (2021). Measuring corporate management in business maturity forecasting models. Original Research, 9(4), 277-290.
- 37.Michalski, G., (2009). Inventory management optimization as part of operational risk management. Economic Computation and Economic Cybernetics Studies and Research, 4.
- 38.Mitchell, K., Nagrial, M. and Rizk, J., (2005). Simulation and optimisation of renewable energy systems. International Journal of Electrical Power and Energy Systems, 27(3), 177-188.
- 39.Mohsni, S., Otchere, I., (2014). Risk taking behavior of privatized banks. Journal of Corporate Finance, 29, 122-142.
- 40.Oliveira, J. B., Jin, M., Lima, R. S., Kobza, J. E. and Montevechi, J. A. B., (2019). The role of simulation and optimization methods in supply chain risk management: Performance and review standpoints. In Simulation Modelling Practice and Theory (Vol. 92, pp. 17=44).Elsevier B.V.
- 41.Pan, X., Xin, Z., (2013). Study of Cost-Time-Quality in Project Failure Risk Assessment Based on Monte Carlo Simulation. In E. Qi, J. Shen, and R. Dou (Eds.), The 19th International Conference on Industrial Engineering and Engineering Management (pp. 1361-1368). Springer Berlin Heidelberg.
- 42.Parolin, G., Borges, A. T., Santos, L. C. C. and Borille, A. V., (2021). A tool for aircraft ecodesign based on streamlined Life Cycle Assessment and Uncertainty Analysis. Procedia CIRP, 98, 565-570.
- 43.Peña, A., Bonet, I., Lochmuller, C., Chiclana, F. and Góngora, M., (2018). Flexible inverse adaptive fuzzy inference model to identify the evolution of operational value at risk for improving operational risk management. Applied Soft Computing Journal, 65, 614-631.
- 44.Pich, M. T., Loch, C. H. and Meyer, A. De., (2002). On Uncertainty, Ambiguity, and Complexity in Project Management. Management Science, 48(8), 1008-1023.
- 45.Rakhaev, V. A., (2020). Developing credit risk assessment methods to make loss provisions for potential loans. Finance: Theory and Practice, 24(6), 82-91.
- 46.Razminia, K., Razminia, A., (2022). Convolution integral for fractional diffusion equation. In Chaos, Solitons and Fractals (Vol. 155). Elsevier Ltd.
- 47.Shojaeimehr, S., Rahmani, D., (2022). Risk management of photovoltaic power plants using a novel fuzzy multi-criteria decision-making method based on prospect theory: A sustainable development approach. Energy Conversion and Management, X, 16.
- 48.Shreve, C. M., Kelman, I., (2014). Does mitigation save? Reviewing cost-benefit analyses of disaster risk reduction. International Journal of Disaster Risk Reduction, 10(PA), 213-235.
- 49.Snyman, J. A., Wilke, D. N., (2005). Practical mathematical optimization (pp. 97-148). Springer Science+ Business Media, Incorporated.
- 50.Visser, J. K., (2016). Suitability of different probability distributions for performing schedule risk simulations in project management. 2016 Portland International Conference on Management of Engineering and Technology (PICMET), 2031-2039.
- 51.Wang, X., Zhao, T. and Chang, C. Ter., (2021). An integrated FAHP-MCGP approach to project selection and resource allocation in risk-based internal audit planning: A case study. Computers and Industrial Engineering, 152.
- 52.Yang, Q., Chin, K. S. and Li, Y. L., (2018). A quality function deployment-based framework for the risk management of hazardous material transportation process. Journal of Loss Prevention in the Process Industries, 52, 81-92.
- 53.Zhang, H., (2020). Optimization of risk control in financial markets based on particle swarm optimization algorithm. Journal of Computational and Applied Mathematics, 368.
- 54.Zhang, L., (2020). The optimization analysis of the communication model of negative influence of the entrepreneur’s social relationship change. Intelligent Automation and Soft Computing, 26(3), 577-583.
- 55.Zhang, S., Wang, X., (2021). Dynamic Probability Analysis for Construction Schedule Using Subset Simulation. Advances in Civil Engineering, 2021, 1-13.
- 56.Zhao, X., Hwang, B. G. and Low, S. P., (2015). Enterprise risk management in international construction firms: Drivers and hindrances. Engineering, Construction and Architectural Management, 22(3), 347-366.
- 57.Zheng, D., Yu, L. and Wang, L., (2019). A techno-economic-risk decision-making methodology for large-scale building energy efficiency retrofit using Monte Carlo simulation. Energy, 189, 116169.
- 58.Zhu, W., Zhang, T., Wu, Y., Li, S. and Li, Z., (2022). Research on optimization of an enterprise financial risk early warning method based on the DS-RF model. International Review of Financial Analysis, 81, 102140.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e87e891-8c98-40a5-85bf-38f8b3454d07
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.