PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficient heart disease diagnosis based on twin support vector machine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heart disease is the leading cause of death in the world according to the World Health Organization (WHO). Researchers are more interested in using machine learning techniques to help medical staff diagnose or detect heart disease early. In this paper, we propose an efficient medical decision support system based on twin support vector machines (Twin-SVM) for heart disease diagnosing with binary target (i.e. presence or absence of disease). Unlike conventional support vector machines (SVM) that finds only one optimal hyperplane for separating the data points of first class from those of second class, which causes inaccurate decision, Twin-SVM finds two non-parallel hyper-planes so that each one is closer to the first class and is as far from the second class as possible. Our experiments are conducted on real heart disease dataset and many evaluation metrics have been considered to evaluate the performance of the proposed method. Furthermore, a comparison between the proposed method and several well-known classifiers as well as the state-of-the-art methods has been performed. The obtained results proved that our proposed method based on Twin-SVM technique gives promising performances better than the state-of-the-art. This improvement can seriously reduce time, materials, and labor in healthcare services while increasing the final decision accuracy.
Czasopismo
Rocznik
Strony
3--11
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • LASS Laboratory, Faculty of technology, University Mohamed Boudiaf of M’sila, Algeria
  • LASS Laboratory, Faculty of technology, University Mohamed Boudiaf of M’sila, Algeria
  • LASS Laboratory, Faculty of technology, University Mohamed Boudiaf of M’sila, Algeria
Bibliografia
  • 1. World Health Organization (WHO), 2019. Cardiovascular diseases (CVDs)-Key Facts. http://www.who.int/news-room/factsheets/detail/cardiovascular-diseases-(cvds).
  • 2. Raza K. Improving the prediction accuracy of heart disease with ensemble learning and majority voting rule. U-Healthcare Monitoring Systems. 2019:179-196. https://doi.org/10.1016/B978-0-12-815370- 3.00008-6.
  • 3. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Turner MB. Heart disease and stroke statistics-2015 update: a report from the American Heart Association. Circulation. 2015; 131(4):29-322.
  • 4. Desai RJ, Wang SV, Vaduganathan M, Evers T, Schneeweiss S. Comparison of machine learning methods with traditional models for use of administrative claims with electronic medical records to predict heart failure outcomes. JAMA network open. 2020;3(1):1918962-1918962. https://doi.org/10.1001/jamanetworkopen.2019.18962.
  • 5. Awaysheh A, Wilcke J, Elvinger F, Rees L, Fan W, Zimmerman KL. Review of medical decision support and machine-learning methods. Veterinary pathology. 2019;56(4):512-525. https://doi.org/10.1177/0300985819829524..
  • 6. Srinivas K, Rani BK, Govrdhan A. Applications of data mining techniques in healthcare and prediction of heart attacks. Int. J. Comput. Sci. Eng. (IJCSE). 2010;2: 250-255.
  • 7. Shouman M, Turner T, Stocker R. Using decision tree for diagnosing heart disease patients. In Proceedings of the Ninth Australasian Data Mining Conference-Volume. 2011;121:23-30.
  • 8. Chaurasia, V, Pal S. Early prediction of heart diseases using data mining techniques. Caribbean Journal of Science and Technology. 2013;1:208-217.
  • 9. Abushariah MA, Alqudah AA, Adwan OY, Yousef RM. Automatic heart disease diagnosis system based on artificial neural network (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) approaches. Journal of software engineering and applications. 2014;7(12):1055. https://doi.org/10.4236/jsea.2014.712093.
  • 10. Xiong Z, Nash MP, Cheng E, Fedorov VV, Stile, MK, Zhao J. ECG signal classification for the detection of cardiac arrhythmias using a convolutional recurrent neural network. Physiological measurement. 2018;39(9):094006.
  • 11. Xiao B, Xu Y, Bi X, Zhang J, Ma X. Heart sounds classification using a novel 1-D convolutional neural network with extremely low parameter consumption. Neurocomputing. 2020;392:153-159. https://doi.org/10.1016/j.neucom.2018.09.101.
  • 12. Amin MS, Chiam YK, Varathan KD. Identification of significant features and data mining techniques in predicting heart disease. Telematics and Informatics. 2019;36:82-93. https://doi.org/10.1016/j.tele.2018.11.007.
  • 13. Padmanabhan M, Yuan P, Chada G, Nguyen HV. Physician-friendly machine learning: A case study with cardiovascular disease risk prediction. Journal of clinical medicine. 2019;8(7):1050. https://doi.org/10.3390/jcm8071050.
  • 14. Hasan NI, Bhattacharjee A. Deep learning approach to cardiovascular disease classification employing modified ECG signal from empirical mode decomposition. Biomedical Signal Processing and Control. 2019;52:128-140. https://doi.org/10.1016/j.bspc.2019.04.005.
  • 15. Ali L, Rahman A, Khan A, Zhou M, Javeed A, Khan JA. An automated diagnostic system for heart disease prediction based on χ2 statistical model and optimally configured deep neural network. IEEE Access. 2019; 7:34938-34945. https://doi.org/10.1109/ACCESS.2019.2904800.
  • 16. Sellami A, Hwang H. A robust deep convolutional neural network with batch-weighted loss for heartbeat classification. Expert Systems with Applications. 2019;122:75-84. https://doi.org/10.1016/j.eswa.2018.12.037.
  • 17. Vapnik V. The nature of statistical learning theory. Springer Science & Business Media. 2013.
  • 18. Scholkopf B, Smola AJ. Learning with kernels: support vector machines, regularization, optimization, and beyond. Adaptive Computation and Machine Learning series. 2018.
  • 19. Tan KC, Teoh EJ, Yu Q, Goh KC. A hybrid evolutionary algorithm for attribute selection in data mining. Expert Systems with Applications. 2009; 36(4):8616-8630. https://doi.org/10.1016/j.eswa.2008.10.013.
  • 20. Bouali H, Akaichi J. Comparative study of different classification techniques: heart disease use case. 13th International Conference on Machine Learning and Applications. 2014;482-486.
  • 21. Otoom AF, Abdallah EE, Kilani Y, Kefaye A, Ashour M. Effective diagnosis and monitoring of heart disease. International Journal of Software Engineering and Its Applications. 2015;9(1):143-156. https://dx.doi.org/10.14257/ijseia.2015.9.1.12.
  • 22. Wang SJ, Mathew A, Chen Y, Xi LF. Ma, L, Lee, J. Empirical analysis of support vector machine ensemble classifiers. Expert Syst. Appl. 2009; 36: 6466-6476.
  • 23. Tomar D, Agarwal S. Feature selection based least square twin support vector machine for diagnosis of heart disease. Int. J. Bio-Sci. Bio-Technol. 2014;6: 69-82. https://dx.doi.org/10.14257/IJBSBT.2014.6.2.07
  • 24. Tang L, Tian Y, Pardalos PM. A novel perspective on multiclass classification: Regular simplex support vector machine. Information Sciences. 2019;480: 324-338. https://doi.org/10.1016/j.ins.2018.12.026.
  • 25. Khemchandani R, Chandra S. Twin support vector machines for pattern classification. IEEE Transactions on pattern analysis and machine intelligence. 2007;29(5):905-910.
  • 26. Tanveer M, Sharma A, Suganthan PN. General twin support vector machine with pinball loss function. Information Sciences. 2019;494:311-327. https://doi.org/10.1016/j.ins.2019.04.032.
  • 27. Smola AJ, Schölkopf B. A tutorial on support vector regression. Statistics and computing. 2004;14(3): 199-222.
  • 28. Steinwart I, Scovel C. Mercer’s theorem on general domains: On the interaction between measures, kernels, and RKHSs. Constructive Approximation. 2012; 35(3):363-417.
  • 29. Uci data homepage. [Online]. Available: https://archive.ics.uci.edu/ml/datasets/Heart+Disease
  • 30. Peter TJ, Somasundaram K. An empirical study on prediction of heart disease using classification data mining techniques. In IEEE-International conference on advances in engineering, science and management (ICAESM-2012). 2012: 514-518.
  • 31. Nahar J, Imam T, Tickle KS, Chen YPP. Computational intelligence for heart disease diagnosis: A medical knowledge driven approach. Expert Systems with Applications. 2013; 40(1):96-104.
  • 32. Ismaeel S, Miri A, Chourishi D. Using the Extreme Learning Machine (ELM) technique for heart disease diagnosis. IEEE Canada International Humanitarian Technology Conference (IHTC2015), 2015: 1-3.
  • 33. Djerioui M, Brik Y, Ladjal M, Attallah B. Neighborhood component analysis and support vector machines for heart disease prediction. Journal of Ingénierie des Systèmes d’Information. 2019; 24(6) : 591-595. https://doi.org/10.18280/isi.240605.
  • 34. Richens JG, Lee CM, Johri S. Improving the accuracy of medical diagnosis with causal machine learning. Nature communications. 2020;11(1):1-9. https://doi.org/10.1038/s41467-020-17419-7.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e829007-54f7-4aa0-b52f-8122b927f7ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.