PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Badania siły przepychania pocisków ze spieków W-Cu-BNα o różnej zawartości fazy rozproszonej W-BNα

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Research of pushing force of bullets made of W-Cu-BNα sinters with different content of dispersed W-BNα phase
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono wyniki badań modelowych pocisków do nabojów 9 × 19 mm Parabellum wykonanych ze spiekanych kompozytów Cu-W-BNα. Badania polegały na przepychaniu pocisków przez stożek przejściowy oraz cylindryczny odcinek przewodu lufy pomiarowej kalibru 9 mm. Celem tych badań było określenie wpływu zawartości fazy rozproszonej w kompozytach Cu-W-BNα na wartość siły przepychania.
EN
Results of examination of the model bullets of 9 × 19 mm Parabellum made of copper composites with dispersed phase of tungsten and boron nitride particles are presented in this paper (W-BNα). The study consisted in pushing the bullets through forcing cone and cylindrical section of the barell of 9-mm caliber. The aim of this study was to determine the effect of W-BNα content on the force pushing value.
Rocznik
Strony
279--289
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Wojskowa Akademia Techniczna, Wydział Mechatroniki i Lotnictwa, Instytut Techniki Uzbrojenia, 00-908 Warszawa, ul. gen. S. Kaliskiego 2
  • Wojskowa Akademia Techniczna, Wydział Mechatroniki i Lotnictwa, Instytut Techniki Uzbrojenia, 00-908 Warszawa, ul. gen. S. Kaliskiego 2
Bibliografia
  • [1] R.R. Durkee, D.W. Douglas, Development of lead-free 5.56 mm ammunition using a tungsten/ nylon composite material, Tungsten, Hard Metals and Refractory alloys 5, Metal Powder Industries Federation, Princeton, 2000, 9-12.
  • [2] J.R. Middleton, Elimination of toxic/hazardous materials from small caliber ammunition, Tungsten, Hard Metals and Refractory alloys 5, Metal Powder Industries Federation, Princeton, 2000, 3-8.
  • [3] M.R. Marby, Lead-free 5.56 mm ammunition, Joint Services Small Arms Symposium, Session VII – Ammunition and the Environment, August 2000.
  • [4] N. Vaughn, R. Lowden, Powder metallurgy replacements for lead in small caliber bullets, NDIA 1998 Small Arms Systems Section, Annual Conference, Culumbus, Georgia, 1998 (dostępne on-line: www.dtic mil).
  • [5] R. Lowden, U.S. Military “Green Bullet” (dostępne on-line: www.firearmsid.com).
  • [6] L.S. Magness, Deepak Kapoor, Tungsten composite materials with alternative matrices forballistic applications, Tungsten, Hard Metals, and Refractory alloys 5, Metal Powder Industries Federation, Princeton, 2000, 15-23.
  • [7] R. Lowden et al., Non-lead environmentally safe projectiles and method of making same, United States Patent No 5, 760, 331.
  • [8] J.L. Jones, Frangible and non-toxic ammunition (dostępne on-line: www.policeandsecuritynews).
  • [9] R. Kelly, Advantages in lead-free frangible bullets for training ammunition, Joint Services Small Arms Symposium, Session VII – Ammunition, August 2001.
  • [10] Product Data Sheet & General Processing Conditions, RTP Company Imagineering Plastics, USA.
  • [11] A. Dębski, J. Janiszewski, R. Paszkowski, Pociski kompozytowe do ćwiczebnej amunicji strzeleckiej, Kompozyty, 2, 2009, 192-196.
  • [12] J. Janiszewski, K. Rutyna, Z. Surma, W. Furmanek, Badania pocisków fragmentujących, Biul. WAT, 56, 1(646), 2007, 9-28.
  • [13] J. Janiszewski, K. Rutyna, Impact behavior of Cu-Sn frangible bullets, 8th Symposium on Weapon Systems, Brno, Czechy, 2007.
  • [14] Patent US 2003/0164063A1, Tungsten/powdered metal/Polymer high density nontoxic composites.
  • [15] Patent US 2003/0027005A1, Composite material containing tungsten, tin and organic additive.
  • [16] B. Lawton, Thermo-chemical erosion in gun barrels, Wear, 251, 2001, 827-838.
  • [17] Dong-Yoon Chunga, Naeho Shin, Myoungho Oh, Sam-Hyeon Yoo, Seok-Hyun Nam, Casestudy. Prediction of erosion from heat transfer measurements of 40 mm gun tubes, Wear, 263, 2007, 246-250.
  • [18] I.N. Lazovik, A.A. Ashurkov, Powder Gas Diffusion into the Surface Layer of the Aviation Quick-Firing Gun Barrel, Russian Aeronautics, 50, 2, 2007.
  • [19] P.J. Cote, M.E. Todaro, G. Kendall, M. Witherell, Gun bore erosion mechanisms revisited with laser pulse heating, Surface and Coatings Technology, 163-164, 2003, 478-483.
  • [20] S. Sopoka, C. Rickard, S. Dunn, Thermal-chemical-mechanical gun bore erosion of an advanced artillery system, part one: Theories and Mechanism, Wear, 258, 2005, 659-670.
  • [21] S. Sopoka, C. Rickard, S. Dunn, Thermal-chemical-mechanical gun bore erosion of an advanced artillery system, part two: Modeling and predictions, Wear, 258, 2005, 671-683.
  • [22] V.K. Zelenko, Yu.N. Drozdov, V.M. Korolev, Bore Wear Caused by Firing Steel Monoblock Bullets, Journal of Machinery Manufacture and Reliability, 40, 1, 2011, 51-54.
  • [23] P.J. Cote, Ch. Rickard, Gas-metal reaction products in the erosion of chromium-plated gun bores, Wear, 241, 2000,17-25.
  • [24] E. Włodarczyk, A. Moszczyński, A. Jackowski, Investigation of Barrel Bore Wearing Mechanism, JTAM, 3, 33, 1995, 539-549.
  • [25] R.M. German, Powder Metallurgy Science, Metal Powder Federation, USA, 1994.
  • [26] B. Wang, E. Zang, On the compressive behaviour of sintered porous coppers with low-to-medium porosities, part 2: Preparation and microstructure, I.J. Mec. Sci., 50, 2008, 550-558.
  • [27] K. Sarzyńska, Wpływ zawartości azotku boru na wybrane charakterystyki tribologiczne spieków Cu-BNα, Problemy Mechatroniki, Uzbrojenie, Lotnictwo, Inżynieria Bezpieczeństwa, 4, 10, 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e80e285-0cc1-41ba-93b8-d62e47edca8a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.