PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Biological, Physico-Chemical and Morphological Analyses of Four Biochars Derived from Agricultural Waste

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Around the world, the increasing population and consumption are placing huge demands on food. Agriculture is considered one of the important sectors in the world and the force to feed humanity. While under these circumstances, which stand out by successive years of drought, degradation of soil, climate change, and global warming, this sector has multifaceted a major issue that goes beyond threatening food security. Thus, Morocco characterized by an arid and semi-arid climate is one example of countries that suffered from those problems. Due to lack of rain, the water resources of some Moroccan arable lands are consumed highly as well as the quality of its soils is now degraded. This issue calls for new approaches to amending the degraded soils in these regions and sustain water supplies. Indeed, biochar can be a remedy for these poor soils; in fact, it has an incredible sequester carbon on soil, a benefit on the environment as well as on plant growth. Despite its virtues, certain biochars contain phytotoxic compounds. In this study, four biochars prepared from banana waste, peanut hull, almond shells, and walnut shells were tested on three plant species (cress to test (HAP), barley for assessing heavy metals, and lettuce to assess salinity) before any field application. The chemical and physical analysis was done for the four biochars and the sandy soil, the four biochars were also analyzed by scanning electron microscopy (SEM) for identifying the morphology of each biochar. The results showed that the four biochars enhanced water holding capacity (WHC), they also revealed the existence of heavy metals especially for almond shells biochar and walnut shells biochar. While for the morphology of each biochar, banana waste biochar (BC-BW) and peanut hull biochar (BC-PeH) had more pores than almond shells biochar (BC-Alm) and walnut shells biochar(BC-WS). Concerning the phytotoxic tests, the lettuce was germinated in all biochars treatments except for the 8% biochar banana treatment, for the cress and barley, all the treatments were grown.
Rocznik
Strony
36--46
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
  • Faculty of Applied Sciences, Ibn Zohr University, Ait Melloul, Morocco
  • Sidi Mohamed Ben Abdellah University, Faculty of Sciences and Techniques, Fès, Morocco
  • Polydisciplinary Faculty, Ibn Zohr University, Taroudant, Morocco
  • Higher Institute of Maritime Fisheries, Agadir, Morocco
  • Faculty of Applied Sciences, Ibn Zohr University, Ait Melloul, Morocco
Bibliografia
  • 1. Akhtar, S., Andersen, M., Liu, F. 2015.Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agricultural Water Management. 158, 61–68.
  • 2. Bargmann, I., Rillig, M.C., Buss, W., Kruse, A., Kuecke, M. 2013. Hydrochar and Biochar Effects on Germination of Spring Barley. Journal of Agronomy and Crop Science. 199(5), 360–373.
  • 3. Barrow, C.J. 2012. Biochar. Potential for countering land degradation and for improving agriculture. Applied Geography. 34, 21–280.
  • 4. Blakemore, L.C., Searle, P.L., Daly, B.K. 1987. Methods for Chemical Analysis of Soils. New Zealand Soil Bureau Scientific Report. 80, 103.
  • 5. Boudergues, R., Calvet, H. 1970. Note sur la digestiblité des coques d’arachides utilisées en alimentation animale. I. Digestibilité In vitro. Revue d’Elevage et de Médecine Vétérinaire des Pays Tropicaux. 23, 493.
  • 6. Bouqbis, L., Koyro, H. W., Harrouni, M. C., Daoud, S., Ainlhout, L. F. Z., Kammann, C. I. 2016. Effect of Two Different Biochars on Germination and Seedlings Growth of Salad, Cress and Barley. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering.10(12), 1–9.
  • 7. Bouqbis, L., Daoud, S., Koyro, H. W., Kammann, C. I., Ainlhout, F. Z., Harrouni, M. C. 2017. Phytotoxic effects of argan shell biochar on salad and barley germination. Agriculture and Natural Resources., 51(4), 247–252.
  • 8. Busch, D., Kammann, C.,Grünhage, L., Müller, C. 2012. Simple biotoxicity tests for evaluation of carbonaceous soil additives: establishment and reproducibility of four test procedures. Journal of Environmental Quality, 41(4), 1023–1032.
  • 9. Buss, W., Masek, O., 2014. Mobile organic compounds in biochar: a potential source of contamination phytotoxic effects on cress seed (Lepidium sativum) germination. Journal Environmental Management, 137, 111–119.
  • 10. Chan, K.Y., Zwieten, L. Van., Meszaros,I., Downie, A., Joseph, S. 2008. Using poultry litter biochars as soil amendments. Australian Journal of Soil Research, 46, 437–444.
  • 11. Chanakya, H. N., Sreesha, M.2012. Anaerobic retting of banana and are canut wastes in a plug flow digester for recovery of fiber, biogas and compost. Energy for Sustainable Development, 2(16), 231–235.
  • 12. Celletti,S., Bergamo, A., Benedetti, V., Pecchi, M., Patuzzi, F., Basso, D., Baratieri, M., Cesco, S., Mimmo, T. 2020. Phytotoxicity of hydrochars obtained by hydrothermal carbonization of manure-based digestate, Journal of Environmental Management.
  • 13. Cui, L., Yan, J., Yang, Y., Li, L., Quan, G., Ding, C., Chen, T., Fu, Q., Chang, A. 2013. Influence of Biochar on Microbial Activities of Heavy Metals Contaminated Paddy Fields. BioResources. 8(4), 5536–5548 .
  • 14. Darley, E. F., Burleson, F. R., Mateer, E. H., Middleton, J. T., Osterli, V. P. 1966. Contribution of Burning of Agricultural Wastes to Photochemical Air Pollution. Journal of the Air Pollution Control Association, 16(12), 685–690 .
  • 15. Domene, X., Enders, A., Hanley, K., Lehmann, J., 2015. Ecotoxicological characterization of biochars: role of feedstock and pyrolysis temperature. Science Total Environmeent, 512, 552–561.
  • 16. FAO 2018. Banana Market Review: Preliminary results for 2018. Rome. 12 pp. http://www.fao.org/fileadmin/templates/est/COMM_MARKETS_MONITORING/Bananas/Documents/Banana_Market_Review_Prelim_Results_2018.pdf
  • 17. Fidel, R. B., Laird, D. A.,Thompson, M. L. Lawrinenko, M. 2017. Characterization and quantification of biochar alkalinity. Chemosphere. 167, 367–373.
  • 18. Foley, J. A., Ramankutty, N., Brauman, K. A.,Cassidy, Y. E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K.,West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C.,Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., Zaks, D. P. M. 2011. Solutions for a cultivated planet. Nature, 478(7369), 337–342.
  • 19. Freddo, A., Cai, C. Reid, B. J. 2012.Environmental contextualisation of potential toxic elements and polycyclic aromatic hydrocarbons in biochar. Environmental Pollution, 171,18–24.
  • 20. Glaser, B., Haumaier, L., Guggenberger, G., Zech, W. 2001. The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften, 88(1), 37–41.
  • 21. Glaser, B., Lehmann, J., Zech, W. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review. Biology and Fertility of Soils, 35(4), 219–230.
  • 22. Hale, S.E., Lehmann, J., Rutherford, D., Zimmerman, A.R., Bachmann, R.T.,Shitumbanuma, V., O’Toole, A., Sundqvist, K.L., et al., 2012. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environmental Science & Technology, 46 (17), 9333–9341.
  • 23. Inyang, M., Dickenson, E. 2015.The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review. Chemosphere, 134, 232–240.
  • 24. Kammann, C. I., Linsel, S.,Gössling, J. W., Koyro, H. W. 2011. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil– plant relations. Plant and Soil, 345 (1-2), 195–210.
  • 25. Katyal, S., Thambimuthu, K.,Valix, M.: Carbonisation of bagasse in a fixed bed reactor.2003. influence of process variables on char yield and characteristics. Renewable Energy, 28(5), 713–725.
  • 26. Kehres, B., Th elen-Jüngling, M., Bidlingmaier, W., Meyer-Spasche, H., Fischer, P., Philipp, W., Marciniszyn, E., Schneichel, H-W., Severin, K., Müller, M. 2006. Methodenbuch zur Analyse organischer Düngemittel, Bodenverbesserungsmittel und Substrate. (Method handbook for analysis of organic fertilizers, soil ameliorants and substrates.). BundesgütegemeinschaftKompost e.V, Köln-Gremberghoven. https://scholar.google.com/scholar_lookup?title=Methodenbuch%20zur%20Analyse%20organischer%20D%C3%BCngemittel%2C%20Bodenverbesserungsmittel%20und%20Substrate.%20%28Method%20handbook%20for%20analysis%20of%20organic%20fertilizers%2C%20soil%20ameliorants%20and%20substrates.%29&publication_year=2006&author=Kehres%2CB&author=Th%20elen
  • 27. Koltowski, M., Moleszczuk, P.2015. Toxicity of biochars after polycyclic aromatic hydrocarbons removal by thermal treatment. Ecological Engineering, 75, 79–85.
  • 28. Libra, J. A., Ro, K. S.,Kammann, C., Funke, A., Berge, N. D., Neubauer, Y., Titirici, M. M., Fühner, C.,Bens, O., Kern, J., Emmerich, K. H. 2011. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2(1), 71–106.
  • 29. Lachat Instruments, Milwaukee, WI, USA, Quik Chem Method. 1998a.13–107–06–2-D.
  • 30. Lachat Instruments, Milwaukee, WI, USA, Quik Chem Method. 1998b.13–115–01–1-B
  • 31. Lindsay, W.L. & Norvell, W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42, 421–428.
  • 32. Liu, T., Liu, B., Zhang, W. 2014. Nutrients and Heavy Metals in Biochar Produced by Sewage Sludge Pyrolysis: Its Application in Soil Amendment. Polish Journal of Environmental Studies, 23(1), 271–275.
  • 33. Mahhou, A., Dennis, F. G.1992. The Almond in Morocco. Horttechnology, 2(4), 488–492.
  • 34. Oukabli, A. Mamouni,A.2006. Le Noyer: Pour une diversification fruitière rentable. Transfert de Technologie en Agriculture Maroc, https://www.agrimaroc.net/bulletins/btta_139.pdf.
  • 35. Oleszczuk, P., Josko, I., Kusmierz, M., 2013. Biochar properties regarding to contaminants content and ecotoxicological assessment. Journal of Hazardous Materials, 260, 375–382.
  • 36. Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W. Chuasavathi, T. 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil. 348(1), 439–451.
  • 37. Peigné, J.,Girardin, P. 2004. Environmental Impacts of Farm-Scale Composting Practices. Water Air and Soil Pollution, 153(1), 45–68.
  • 38. Saeed, M. A., Medina, C. H., Andrews, G. E., Phylaktou, H. N., Slatter, D., Gibbs, B. M. 2014. Agricultural waste pulverised biomass: MEC and flame speeds. Journal of Loss Prevention in the Process Industries, 36, 308–317.
  • 39. Tamburino, L., Bravo, G., Clough, Y., Nicholas, K. A. 2020. From population to production: 50 years of scientific literature on how to feed the world. Global Food Security,24, 100346.
  • 40. Tanji, A., Benicha, M., Mrabet, R. 2011. Techniques de production de l’arachide: Résultats d’enquêtes au Loukkos. Transfert de Technologie en Agriculture Maroc, http://webagris.inra.ma/doc/tanji09111.pdf.
  • 41. Uras, Ü., Carrier,M., Hardie, A. G.,Knoetze, J. H. 2012. Physico-chemical characterization of biochars from vacuum pyrolysis of South African agricultural wastes for application as soil amendments. Journal of Analytical and Applied Pyrolysis 98, 207–213.
  • 42. Van Rast, E., Verloo, M., Demeyer, A., Pauwels, J.M. 1999. Manual for the Soil Chemistry and Fertility Laboratory.
  • 43. Walali, L. D., Skiredj, A.,Elattir, H. 2003. L’amandier, l’olivier, le figuier, le grenadier. Transfert de Technologie en Agriculture Maroc, https://www.agrimaroc.net/bulletins/btta_105.pdf.
  • 44. Zhang, D., Pan, G., Wu, G., Kibue, G. W., Li, L., Zhang, X., Zheng, J., Zheng, J., Cheng, K., Joseph, S., Liu, X. 2016. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol. Chemosphere, 142, 106–113.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e7dd340-238b-4777-a639-e11b811c2d45
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.