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Abstra
t. The investigation of strong automorphisms of Witt rings is a di�
ult

task be
ause of variety of their stru
tures. Cordes Theorem, known in literature as

Harrison-Cordes 
riterion (
f. [1, Proposition 2.2℄, [3, Harrison's Criterion℄), makes

the task of des
ribing all the strong automorphisms of a given (abstra
t) Witt ring

W = (G, R) easier. By this theorem, it su�
es to �nd all su
h automorphisms σ of

the group G that map the distiguished element −1 of the group G into itself (i.e.

σ(−1) = −1) in whi
h the value sets of 1-fold P�ster forms are preserved in the

following sense: σ(D(1, a)) = D(1, σ(a)) for all a ∈ G. We use the above 
riterion

and the well-known stru
ture of the group G as a ve
tor spa
e over two-element �eld

F2 for sear
hing all automorphisms of this group. Then we 
he
k Harrison-Cordes


riterion for found automorpisms and obtain all the automorpisms of a Witt ring W .

The task is easy for small rings (with small groups G). For sear
hing of all strong

automorpisms of bigger Witt rings we use a 
omputer whi
h automatizes the pro
e-

dure des
ribed above. We present the algorithm for �nding strong automorphisms

of a Witt rings with �nite group G and show how this algorithm 
an be optimized.

1. Sear
hing of automorphisms of Witt rings

Consider Witt rings in terminology of Marshall [2℄. Let W = (R,G) be

a Witt ring, where the group G is �nite. We are interested in �nding all

automorphisms of the given �nitely generated Witt ring W . By de�nition, the

map σ is an automorphism of a Witt ring W if σ is su
h an automorphism of
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the ring R that σ(G) = G. Cordes in [1℄ has formulated the usefull 
riterion

for σ to be an automorphism of a Witt ring: any σ ∈ Aut(G) indu
es an

automorphism of a Witt ring W i�

1) σ(−1) = 1;

2) D(1, σ(a)) = σ(D(1, a)) for all a ∈ G,

where by D(1, a) we denote the value set of a 1-fold P�ster form (1, a). The

above statement, 
alled nowadays the Harrison-Cordes 
riterion (
f. [3℄),

allows us to investigate automorphisms of simpler stru
ture of the group G
instead of automorphisms of the ring R.

As we know, G is a group of exponent 2, so it 
an be 
onsisered as a ve
tor

spa
e over F2. Hen
e, we 
an 
onsider automorphisms of ve
tor spa
e G(F2)
(see Algorithm 1). For this purpose we 
hoose a basis B of that ve
tor spa
e

(step 1). If |G| = 2n, then B of ve
tor spa
e G(F2) 
onsists of n elements of G.

If we 
hoose another basis B′ (step 2), we 
an 
reate a map between B and B′.

Finding all su
h bases we 
an build all maps from B′ to other bases in
luding

their permutations of bases (step 3). Then we extend the obtained maps to

a whole group G via known representation of ve
tors of G as a 
ombinations

of elements of the basis B. Finally, we have to 
he
k whether the obtained

automorphisms of the group G full�l the Harrison-Cordes 
riterion. As a re-

sult, we get all su
h automorphisms of the ve
tor spa
e G(F2) whi
h 
an be

extended to automorphisms of Witt ring W = (R,G). This is equivalent to

the 
ase that we have found all strong automorphisms of W .

Algorithm 1 Sear
h for automorphisms of ve
tor spa
e G(F2)

INPUT: dim A = n, |G|;
OUTPUT: A set of all automorphisms of G(F2)
1: Finding a basis B of G(F2).
2: Sear
h for every bases of G(F2).
3: Make maps from basis B to every bases of G(F2) (in
luding B and permu-

tations of all bases).

4: Extend 
reated maps to all group G.

5: Che
k if the obtained maps ful�ll the Harrison-Cordes 
riterion.

The algorithm 1 is easy to handle in the 
ase when the 
ardinality of the

group G generating a Witt ring W = (R,G) is small. Then we 
an 
al
ulate

every automorphisms of W by hand (see example 1). When 
ardinality of G
grows up, the task be
omes mu
h 
ompli
ated and takes a lot of time (
ompare

example 2). In order to a

elerate 
al
ulation, we have written a 
omputer

program whi
h realizes the above algorithm. Thanks to the program, we 
an
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�nd automati
ally all automorphisms for all non-isomorphi
 Witt rings with

the group G being �nite. The only limitation is the power of a 
omputer and

the time needed for its work.

Example 1. 1. Let W ∼= Z/2Z[C4] be the group ring of 4-element 
y
li


group C4 with 
oe�
ients in the 2-element ring Z/2Z. Then W is a Witt ring

with 4-element group G. The ve
tor spa
e G(F2) has two-element basis, and

it is easy to 
al
ulate all their 6 automorphisms.

2. Take W ∼= Z/2Z[C2]
4 � a Witt ring, whi
h is the 4th power of a Witt ring

Z/2Z. Then a suitable ve
tor spa
e G(F2) has 
ardinality 16 and 4-element

basis. It turns out that |Aut(G(F2))| = 20160, and it is rather di�
ult task

to 
al
ulate all this automorphisms by hand.

2. Optimalisation of algorithm and experimental
results

In this se
tion we shall show how we have optimized algorithm 1 in order

to a

elerate sear
hing automorphisms with the help of 
omputer. We make

some rationalization in the step 1.

We start from the following equivalen
e relation ∼ whi
h determines the

equivalen
e 
lasses of elements of a group G with respe
t to equi
ardinality

of the value sets of 1-fold P�ster forms. We say that g1 ∼ g2 i� |D(1, g1)| =
|D(1, g2)|. The relation ∼ introdu
es the partition of the set of all elements

of group G into the equivalen
e 
lasses, whi
h we 
all types (of elements)

and denote by T (with subs
ripts when needed). For the sake of simpli
ity

of notation we index them with m 
onse
utive natural numbers, where m is

the number of all the equivalen
e 
lasses. Let B = {b1, . . . , bn} be a basis

of the spa
e G(F2). Then T = {Tj1, . . . , Tjn} is 
alled the type of basis B
if the elements bi are of type Tji for ea
h 1 ≤ i ≤ n. In general, a system

(w1, w2, . . . , wn) of elements of G is of type T = (Tj1, . . . , Tjn) if wi ∈ Tji for

1 ≤ i ≤ n. Clearly, n and m do not have to be identi
al. We do not assume

that the sets Tji are pairwise di�erent for 1 ≤ i ≤ n. Repetitions are allowed.

It seems essential to start o� with su
h a basis B = {b1, . . . , bn} for whi
h

the number of all possible tuples (w1, w2, . . . , wn) is the smallest possible.

Hen
e, our goal is to �nd a basis of su
h a type T = {Tj1, . . . , Tjn} whi
h is

minimal in the sense that a system of types {Tj1, . . . , Tjn} has the smallest

possible 
ardinality.

The algebrai
 program AP (see algorithm 2) sear
hes for a minimal type,

in whi
h a basis exist, by 
omputing the determinants. Here the determinants

are 
omputed a

ording to the Lapla
e expansion algorithm. The algebrai


program AP takes the dimension n of a ve
tor spa
e G(F2) as its input as
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Algorithm 2 pro
edure AP(n, T )
Variable: min ← 0; j ← 1; j ← 1; T ← ∅;

<g> /* n-tuple of elements in type T */

Return values:

AP () :T /* a minimal type T in whi
h a basis exists */

det() : {1,0} /* a value of determinant of matrix M */

build_matrix() :M /* a matrix of s
alars of n elements of group G */

INPUT: a dimension n and a set T of all types T
OUTPUT: a minimal type T = (Tj1, Tj2, . . . , Tjn) in wi
h a basis exists

1: repeat

2: T ← T j ∈ T
3: j ← j + 1
4: min ← 0
5: repeat

6: <g>←<g>i∈ T
7: M ← build_matrix(< g >)

8: if det(M) = 1 then

9: min = 1;

10: end if

11: i ← i + 1
12: until (min = 1)

13: until (min = 1)

14: return T

well as a set T of types T in the 
ardinality in
reasing order, represented as

the lists of 0-1 sequen
es. The AP program gives an n-tuple of types (step

2), generates n elements of a group G belonging to these types (step 6). Then

for ea
h n-tuple it 
omputes the determinant of the n × n matrix of s
alars

(step 8 and 7, respe
tively). If for a given type the determinant of all su
h

matri
es is equal 0, the AP program 
onsiders the next type. Otherwise, it

returns a minimal type in whi
h a basis exists and terminates.

Noti
e that if there is no linearly independent set of ve
tors of type T , the
algebrai
 AP program must perform all the 
omputations of determinant of

|T | possible systems of n ve
tors. Sin
e the number of 
ombinations depends

exponentially on a dimension of ve
tor spa
e G(F2), so the 
omplexity of

algebrai
 program AP depends exponentially on the dimension too.

Our algorithm is implemented in C++ language. Our experiments were


arried out on an IBM PC ma
hine with an Intel Pentium IV 3.2 GHz pro-


essor, 1024 MB RAM memory and Linux operating system.

Below we present an example involving a Witt ring with rather big group
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G, whi
h automorphisms 
annot be 
al
ulated by hand and the group of all

automorpisms is not desribed until now.

Example 2. Consider a Witt ring W = (R,G) with the group

G = G1 × G2 × G3 su
h that |G| = 29, where

G1 = {(1, 1, 1), (1,−1, 1), (1, 1, x), (1, 1, y), (1, 1, xy), (1,−1, x), (1,−1, y), (1,−1, xy)},

G2 = {(1, 1, 1), (1,−1, 1), (1, 1, x), (1, 1, y), (1, 1, xy), (1,−1, x), (1,−1, y), (1,−1, xy)},

G3 = {(1, 1, 1), (−1,−1,−1), (1, 1,−1), (1,−1, 1), (1,−1,−1), (−1, 1, 1), (−1, 1,−1), (−1,−1, 1)}.

A

ording to Algorithm 1, we 
hoose some basis of G(F2), namely

B = (g2, g3, g4, g9, g17, g25, g74, g129, g257). Let us 
he
k what type has that

basis. Knowing the value sets of 1-fold P�ster forms we de
ompose the group

G into 5 types. For the sake of simpli
ity of notation, we denote the type

Tj by its index j, for 1 ≤ j ≤ m; for example, the type T3 will be denoted

by 3. Hen
e, the type T of n-elements of group G will be n-tuple of indi
es

(j1, j2, . . . , jn) of types, where ∀n
i=11 ≤ ji ≤ m and n = dim G(F2).

Type 1 2 3 4 5

Cardinality 56 336 8 104 8

It follows that the type of our basis B is T = (1, 1, 1, 4, 2, 2, 5, 1, 1) and we

must �nd all bases in |T | = 178 862 731 407 360 possible systems of n ve
tors.

With the help of algorithm 2, we have found a basis in minimal type.

Last 10 from 117 
he
ked types are presented in Table 1. As we 
an see, the

type (5, 4, 4, 4, 4, 3, 3, 3, 3) has the smallest 
ardinality between all the types

in whi
h basis of G(F2) exists.

AP

Type T |T | se
. result

(5,3,3,3,1,1,1,1,1) 213909696 293.07 NOT EXISTS

(5,5,5,5,4,3,3,1,1) 251130880 269.96 NOT EXISTS

(5,5,5,4,3,3,3,1,1) 251130880 302.70 NOT EXISTS

(5,5,5,5,4,4,4,3,3) 285539072 314.83 NOT EXISTS

(5,5,5,4,4,4,3,3,3) 285539072 165.72 NOT EXISTS

(5,5,5,3,3,1,1,1,1) 287955360 316.66 NOT EXISTS

(5,5,5,5,5,3,2,1,1) 289766400 265.74 NOT EXISTS

(5,5,3,3,3,3,2,1,1) 289766400 343.82 NOT EXISTS

(5,5,5,5,5,4,4,4,4) 321868820 294.82 NOT EXISTS

(5,4,4,4,4,3,3,3,3) 321868820 153.97 EXISTS

Sum: 3850.03

Table 1: The results for the group of example 2.1.

The algorithm 1 has been improved yet. In [4℄ the autors showed that for

Witt rings, whi
h have −1 �= 1 in G, we 
an 
hoose su
h a basis of minimal
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type that the distinguished element −1 is one of the ve
tor of that basis. In

the next step all bases of minimal type with one �xed ve
tor −1 are sear
hed.

Therefore, we 
an map a 
hoosen basis into all another ones su
h that the

map preserves the ve
tor −1. In that way the �rst 
ondition of the Harrison-

Cordes 
riterion is ful�lled and we redu
e thea number of 
hoosen ve
tors in

ea
h basis to n − 1.
Another rationalization proposed in [4℄ 
onsists in 
oding the problem of

sear
hing of minimal type as a propositional formula and using newest SAT-

solvers � very e�e
tive tool for very�ng satis�ability of that formula. The

autors have showed that the time of �nding minimal type with the help of

SAT-solvers is shorter than in our algorithm 2.

We 
laim that algorithm 1 
an be improved in another way too. We leave

it for our future work.
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