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Abstract. The investigation of strong automorphisms of Witt rings is a difficult
task because of variety of their structures. Cordes Theorem, known in literature as
Harrison-Cordes criterion (cf. [1, Proposition 2.2], [3, Harrison’s Criterion]), makes
the task of describing all the strong automorphisms of a given (abstract) Witt ring
W = (G, R) easier. By this theorem, it suffices to find all such automorphisms o of
the group G that map the distiguished element —1 of the group G into itself (i.e.
o(—1) = —1) in which the value sets of 1-fold Pfister forms are preserved in the
following sense: o(D(1,a)) = D(1,0(a)) for all a € G. We use the above criterion
and the well-known structure of the group G as a vector space over two-element field
Fy for searching all automorphisms of this group. Then we check Harrison-Cordes
criterion for found automorpisms and obtain all the automorpisms of a Witt ring W.
The task is easy for small rings (with small groups G). For searching of all strong
automorpisms of bigger Witt rings we use a computer which automatizes the proce-
dure described above. We present the algorithm for finding strong automorphisms
of a Witt rings with finite group G and show how this algorithm can be optimized.

1. Searching of automorphisms of Witt rings

Consider Witt rings in terminology of Marshall [2]. Let W = (R,G) be
a Witt ring, where the group G is finite. We are interested in finding all
automorphisms of the given finitely generated Witt ring W. By definition, the
map o is an automorphism of a Witt ring W if ¢ is such an automorphism of
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the ring R that o(G) = G. Cordes in [1] has formulated the usefull criterion
for o to be an automorphism of a Witt ring: any o € Aut(G) induces an
automorphism of a Witt ring W iff

Do(-1)=1
2) D(1,0(a)) = o(D(1,a)) for all a € G,

where by D(1,a) we denote the value set of a 1-fold Pfister form (1,a). The
above statement, called nowadays the Harrison-Cordes criterion (cf. [3]),
allows us to investigate automorphisms of simpler structure of the group G
instead of automorphisms of the ring R.

As we know, G is a group of exponent 2, so it can be consisered as a vector
space over Fy. Hence, we can consider automorphisms of vector space G(FF3)
(see Algorithm 1). For this purpose we choose a basis B of that vector space
(step 1). If |G| = 2™, then B of vector space G(F2) consists of n elements of G.
If we choose another basis B’ (step 2), we can create a map between B and B’.
Finding all such bases we can build all maps from B’ to other bases including
their permutations of bases (step 3). Then we extend the obtained maps to
a whole group G via known representation of vectors of G as a combinations
of elements of the basis B. Finally, we have to check whether the obtained
automorphisms of the group G fullfil the Harrison-Cordes criterion. As a re-
sult, we get all such automorphisms of the vector space G(F3) which can be
extended to automorphisms of Witt ring W = (R,G). This is equivalent to
the case that we have found all strong automorphisms of W.

Algorithm 1 Search for automorphisms of vector space G(F3)
INPUT: dim A =n, |G|;
OUTPUT: A set of all automorphisms of G(IF3)
1: Finding a basis B of G(FF2).
2: Search for every bases of G(IFy).
3: Make maps from basis B to every bases of G(F2) (including B and permu-
tations of all bases).
4: Extend created maps to all group G.
5: Check if the obtained maps fulfill the Harrison-Cordes criterion.

The algorithm 1 is easy to handle in the case when the cardinality of the
group G generating a Witt ring W = (R, G) is small. Then we can calculate
every automorphisms of W by hand (see example 1). When cardinality of G
grows up, the task becomes much complicated and takes a lot of time (compare
example 2). In order to accelerate calculation, we have written a computer
program which realizes the above algorithm. Thanks to the program, we can
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find automatically all automorphisms for all non-isomorphic Witt rings with
the group G being finite. The only limitation is the power of a computer and
the time needed for its work.

Example 1. 1. Let W = Z/2Z[C4] be the group ring of 4-element cyclic
group Cy with coefficients in the 2-element ring 7Z/27. Then W is a Witt ring
with 4-element group G. The vector space G(F2) has two-element basis, and
it is easy to calculate all their 6 automorphisms.

2. Take W = Z/2Z[Cs]* — a Witt ring, which is the 4th power of a Witt ring
Z/2Z. Then a suitable vector space G(IF3) has cardinality 16 and 4-element
basis. It turns out that |[Aut(G(F2))| = 20160, and it is rather difficult task
to calculate all this automorphisms by hand.

2. Optimalisation of algorithm and experimental
results

In this section we shall show how we have optimized algorithm 1 in order
to accelerate searching automorphisms with the help of computer. We make
some rationalization in the step 1.

We start from the following equivalence relation ~ which determines the
equivalence classes of elements of a group G with respect to equicardinality
of the value sets of 1-fold Pfister forms. We say that g1 ~ g2 iff |[D(1,¢91)] =
|D(1, g2)|. The relation ~ introduces the partition of the set of all elements
of group G into the equivalence classes, which we call types (of elements)
and denote by T (with subscripts when needed). For the sake of simplicity
of notation we index them with m consecutive natural numbers, where m is
the number of all the equivalence classes. Let B = {b1,...,b,} be a basis
of the space G(F2). Then T = {Tji,...,Tj,} is called the type of basis B
if the elements b; are of type Tj; for each 1 < ¢ < n. In general, a system
(w1, wa, ... ,wy,) of elements of G is of type T = (Tj1, ..., Tyn) if w; € T); for
1 < i < n. Clearly, n and m do not have to be identical. We do not assume
that the sets T); are pairwise different for 1 < ¢ < n. Repetitions are allowed.

It seems essential to start off with such a basis B = {by, ... ,b,} for which
the number of all possible tuples (wq,ws,...,w,) is the smallest possible.
Hence, our goal is to find a basis of such a type T = {Tj1,... ,T},} which is
minimal in the sense that a system of types {T}i,...,Tj,} has the smallest

possible cardinality.

The algebraic program AP (see algorithm 2) searches for a minimal type,
in which a basis exist, by computing the determinants. Here the determinants
are computed according to the Laplace expansion algorithm. The algebraic
program AP takes the dimension n of a vector space G(Fq) as its input as
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Algorithm 2 procedure AP(n,7)
Variable: min « 0; j « 1; j « 1; T « 0;
<g> /* n-tuple of elements in type T */
Return values:
AP():T /* a minimal type T in which a basis exists */
det(): {1,0} /* a value of determinant of matrix M */
build_ matriz(): M /* a matrix of scalars of n elements of group G */
INPUT: a dimension n and a set 7 of all types T
OUTPUT: a minimal type T = (Tj1,Tjo,... ,Tjn) in wich a basis exists
1: repeat
T — Tj eT
Je=g+1
min <0
repeat
<g>e<g>€T
M — build _matriz(< g >)
if det(M) =1 then
min = 1;
end if
1—1+1
12:  until (min = 1)
13: until (min = 1)

14: return T

_ =
—- O

well as a set 7 of types T in the cardinality increasing order, represented as
the lists of 0-1 sequences. The AP program gives an n-tuple of types (step
2), generates n elements of a group G belonging to these types (step 6). Then
for each n-tuple it computes the determinant of the n x n matrix of scalars
(step 8 and 7, respectively). If for a given type the determinant of all such
matrices is equal 0, the AP program considers the next type. Otherwise, it
returns a minimal type in which a basis exists and terminates.

Notice that if there is no linearly independent set of vectors of type T, the
algebraic AP program must perform all the computations of determinant of
IT| possible systems of n vectors. Since the number of combinations depends
exponentially on a dimension of vector space G(F3), so the complexity of
algebraic program AP depends exponentially on the dimension too.

Our algorithm is implemented in C++ language. Our experiments were
carried out on an IBM PC machine with an Intel Pentium IV 3.2 GHz pro-
cessor, 1024 MB RAM memory and Linux operating system.

Below we present an example involving a Witt ring with rather big group
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G, which automorphisms cannot be calculated by hand and the group of all
automorpisms is not desribed until now.

Example 2. Consider a Witt ring W = (R, G) with the group

G = G1 x Gy x G3 such that |G| = 2%, where
Gr={(1,1,1),(1,-1,1),(1,1,2),(1,1,y), (1, 1,zy), (1, -1, 2), (1, -1,9), (L, =1, zy)},

G2 ={(1,1,1), (1, -1,1),(1,1,2), (1, 1,y), (1, 1, zy), (1, -1,2), (1, =1, 9), (1, =1, zy)},

Gs ={(1,1,1), (-1,—1,-1),(1,1,-1),(1,-1,1), (1, =1, —1), (=1,1,1), (-1, 1, 1), (=1, =1, D)}.
According to Algorithm 1, we choose some basis of G(Fz), namely
B = (92,93, 94,99, 917, 925, 974, 9129, g257). Let us check what type has that
basis. Knowing the value sets of 1-fold Pfister forms we decompose the group
G into 5 types. For the sake of simplicity of notation, we denote the type
T; by its index j, for 1 < j < m; for example, the type T3 will be denoted
by 3. Hence, the type T of n-elements of group G will be n-tuple of indices
(41,725 - -+ »n) of types, where VI' ;1 < j; < m and n = dim G(FF3).

Type 1 2 3] 4 |5
Cardinality | 56 | 336 | 8 | 104 | 8

It follows that the type of our basis B is T = (1,1,1,4,2,2,5,1,1) and we
must find all bases in |T| = 178 862731 407 360 possible systems of n vectors.

With the help of algorithm 2, we have found a basis in minimal type.
Last 10 from 117 checked types are presented in Table 1. As we can see, the
type (5,4,4,4,4,3,3,3,3) has the smallest cardinality between all the types
in which basis of G(F2) exists.

AP

Type T |T| sec. result

(5,3,3,3,1,1,1,1,1) | 213909696 | 293.07 | NOT EXISTS
(5,5,5,5,4,3,3,1,1) | 251130880 | 269.96 | NOT EXISTS
(5,5,5,4,3,3,3,1,1) | 251130880 | 302.70 | NOT EXISTS
(5,5,5,5,4,4,4,3,3) | 285539072 | 314.83 | NOT EXISTS
(5,5,5,4,4,4,3,3,3) | 285539072 | 165.72 | NOT EXISTS
( )
( )
( )
( )
( )

5,5,5,3,3,1,1,1,1) | 287955360 | 316.66 | NOT EXISTS
5,5,5,5,5,3,2,1,1) | 289766400 | 265.74 | NOT EXISTS
5,5,3,3,3,3,2,1,1) | 289766400 | 343.82 | NOT EXISTS
5,5,5,5,54,4,4,4) | 321868820 | 294.82 | NOT EXISTS
54,4,4,4,3,3,3,3) | 321868820 | 153.97 EXISTS
Sum: | 3850.03

Table 1: The results for the group of example 2.1.

The algorithm 1 has been improved yet. In [4] the autors showed that for
Witt rings, which have —1 # 1 in G, we can choose such a basis of minimal
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type that the distinguished element —1 is one of the vector of that basis. In
the next step all bases of minimal type with one fixed vector —1 are searched.
Therefore, we can map a choosen basis into all another ones such that the
map preserves the vector —1. In that way the first condition of the Harrison-
Cordes criterion is fulfilled and we reduce thea number of choosen vectors in
each basis to n — 1.

Another rationalization proposed in [4] consists in coding the problem of
searching of minimal type as a propositional formula and using newest SAT-
solvers — very effective tool for veryfing satisfiability of that formula. The
autors have showed that the time of finding minimal type with the help of
SAT-solvers is shorter than in our algorithm 2.

We claim that algorithm 1 can be improved in another way too. We leave
it for our future work.
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