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Abstrat. The investigation of strong automorphisms of Witt rings is a di�ult

task beause of variety of their strutures. Cordes Theorem, known in literature as

Harrison-Cordes riterion (f. [1, Proposition 2.2℄, [3, Harrison's Criterion℄), makes

the task of desribing all the strong automorphisms of a given (abstrat) Witt ring

W = (G, R) easier. By this theorem, it su�es to �nd all suh automorphisms σ of

the group G that map the distiguished element −1 of the group G into itself (i.e.

σ(−1) = −1) in whih the value sets of 1-fold P�ster forms are preserved in the

following sense: σ(D(1, a)) = D(1, σ(a)) for all a ∈ G. We use the above riterion

and the well-known struture of the group G as a vetor spae over two-element �eld

F2 for searhing all automorphisms of this group. Then we hek Harrison-Cordes

riterion for found automorpisms and obtain all the automorpisms of a Witt ring W .

The task is easy for small rings (with small groups G). For searhing of all strong

automorpisms of bigger Witt rings we use a omputer whih automatizes the proe-

dure desribed above. We present the algorithm for �nding strong automorphisms

of a Witt rings with �nite group G and show how this algorithm an be optimized.

1. Searhing of automorphisms of Witt rings

Consider Witt rings in terminology of Marshall [2℄. Let W = (R,G) be

a Witt ring, where the group G is �nite. We are interested in �nding all

automorphisms of the given �nitely generated Witt ring W . By de�nition, the

map σ is an automorphism of a Witt ring W if σ is suh an automorphism of
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the ring R that σ(G) = G. Cordes in [1℄ has formulated the usefull riterion

for σ to be an automorphism of a Witt ring: any σ ∈ Aut(G) indues an

automorphism of a Witt ring W i�

1) σ(−1) = 1;

2) D(1, σ(a)) = σ(D(1, a)) for all a ∈ G,

where by D(1, a) we denote the value set of a 1-fold P�ster form (1, a). The

above statement, alled nowadays the Harrison-Cordes riterion (f. [3℄),

allows us to investigate automorphisms of simpler struture of the group G
instead of automorphisms of the ring R.

As we know, G is a group of exponent 2, so it an be onsisered as a vetor

spae over F2. Hene, we an onsider automorphisms of vetor spae G(F2)
(see Algorithm 1). For this purpose we hoose a basis B of that vetor spae

(step 1). If |G| = 2n, then B of vetor spae G(F2) onsists of n elements of G.

If we hoose another basis B′ (step 2), we an reate a map between B and B′.

Finding all suh bases we an build all maps from B′ to other bases inluding

their permutations of bases (step 3). Then we extend the obtained maps to

a whole group G via known representation of vetors of G as a ombinations

of elements of the basis B. Finally, we have to hek whether the obtained

automorphisms of the group G full�l the Harrison-Cordes riterion. As a re-

sult, we get all suh automorphisms of the vetor spae G(F2) whih an be

extended to automorphisms of Witt ring W = (R,G). This is equivalent to

the ase that we have found all strong automorphisms of W .

Algorithm 1 Searh for automorphisms of vetor spae G(F2)

INPUT: dim A = n, |G|;
OUTPUT: A set of all automorphisms of G(F2)
1: Finding a basis B of G(F2).
2: Searh for every bases of G(F2).
3: Make maps from basis B to every bases of G(F2) (inluding B and permu-

tations of all bases).

4: Extend reated maps to all group G.

5: Chek if the obtained maps ful�ll the Harrison-Cordes riterion.

The algorithm 1 is easy to handle in the ase when the ardinality of the

group G generating a Witt ring W = (R,G) is small. Then we an alulate

every automorphisms of W by hand (see example 1). When ardinality of G
grows up, the task beomes muh ompliated and takes a lot of time (ompare

example 2). In order to aelerate alulation, we have written a omputer

program whih realizes the above algorithm. Thanks to the program, we an
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�nd automatially all automorphisms for all non-isomorphi Witt rings with

the group G being �nite. The only limitation is the power of a omputer and

the time needed for its work.

Example 1. 1. Let W ∼= Z/2Z[C4] be the group ring of 4-element yli

group C4 with oe�ients in the 2-element ring Z/2Z. Then W is a Witt ring

with 4-element group G. The vetor spae G(F2) has two-element basis, and

it is easy to alulate all their 6 automorphisms.

2. Take W ∼= Z/2Z[C2]
4 � a Witt ring, whih is the 4th power of a Witt ring

Z/2Z. Then a suitable vetor spae G(F2) has ardinality 16 and 4-element

basis. It turns out that |Aut(G(F2))| = 20160, and it is rather di�ult task

to alulate all this automorphisms by hand.

2. Optimalisation of algorithm and experimental
results

In this setion we shall show how we have optimized algorithm 1 in order

to aelerate searhing automorphisms with the help of omputer. We make

some rationalization in the step 1.

We start from the following equivalene relation ∼ whih determines the

equivalene lasses of elements of a group G with respet to equiardinality

of the value sets of 1-fold P�ster forms. We say that g1 ∼ g2 i� |D(1, g1)| =
|D(1, g2)|. The relation ∼ introdues the partition of the set of all elements

of group G into the equivalene lasses, whih we all types (of elements)

and denote by T (with subsripts when needed). For the sake of simpliity

of notation we index them with m onseutive natural numbers, where m is

the number of all the equivalene lasses. Let B = {b1, . . . , bn} be a basis

of the spae G(F2). Then T = {Tj1, . . . , Tjn} is alled the type of basis B
if the elements bi are of type Tji for eah 1 ≤ i ≤ n. In general, a system

(w1, w2, . . . , wn) of elements of G is of type T = (Tj1, . . . , Tjn) if wi ∈ Tji for

1 ≤ i ≤ n. Clearly, n and m do not have to be idential. We do not assume

that the sets Tji are pairwise di�erent for 1 ≤ i ≤ n. Repetitions are allowed.

It seems essential to start o� with suh a basis B = {b1, . . . , bn} for whih

the number of all possible tuples (w1, w2, . . . , wn) is the smallest possible.

Hene, our goal is to �nd a basis of suh a type T = {Tj1, . . . , Tjn} whih is

minimal in the sense that a system of types {Tj1, . . . , Tjn} has the smallest

possible ardinality.

The algebrai program AP (see algorithm 2) searhes for a minimal type,

in whih a basis exist, by omputing the determinants. Here the determinants

are omputed aording to the Laplae expansion algorithm. The algebrai

program AP takes the dimension n of a vetor spae G(F2) as its input as
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Algorithm 2 proedure AP(n, T )
Variable: min ← 0; j ← 1; j ← 1; T ← ∅;

<g> /* n-tuple of elements in type T */

Return values:

AP () :T /* a minimal type T in whih a basis exists */

det() : {1,0} /* a value of determinant of matrix M */

build_matrix() :M /* a matrix of salars of n elements of group G */

INPUT: a dimension n and a set T of all types T
OUTPUT: a minimal type T = (Tj1, Tj2, . . . , Tjn) in wih a basis exists

1: repeat

2: T ← T j ∈ T
3: j ← j + 1
4: min ← 0
5: repeat

6: <g>←<g>i∈ T
7: M ← build_matrix(< g >)

8: if det(M) = 1 then

9: min = 1;

10: end if

11: i ← i + 1
12: until (min = 1)

13: until (min = 1)

14: return T

well as a set T of types T in the ardinality inreasing order, represented as

the lists of 0-1 sequenes. The AP program gives an n-tuple of types (step

2), generates n elements of a group G belonging to these types (step 6). Then

for eah n-tuple it omputes the determinant of the n × n matrix of salars

(step 8 and 7, respetively). If for a given type the determinant of all suh

matries is equal 0, the AP program onsiders the next type. Otherwise, it

returns a minimal type in whih a basis exists and terminates.

Notie that if there is no linearly independent set of vetors of type T , the
algebrai AP program must perform all the omputations of determinant of

|T | possible systems of n vetors. Sine the number of ombinations depends

exponentially on a dimension of vetor spae G(F2), so the omplexity of

algebrai program AP depends exponentially on the dimension too.

Our algorithm is implemented in C++ language. Our experiments were

arried out on an IBM PC mahine with an Intel Pentium IV 3.2 GHz pro-

essor, 1024 MB RAM memory and Linux operating system.

Below we present an example involving a Witt ring with rather big group
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G, whih automorphisms annot be alulated by hand and the group of all

automorpisms is not desribed until now.

Example 2. Consider a Witt ring W = (R,G) with the group

G = G1 × G2 × G3 suh that |G| = 29, where

G1 = {(1, 1, 1), (1,−1, 1), (1, 1, x), (1, 1, y), (1, 1, xy), (1,−1, x), (1,−1, y), (1,−1, xy)},

G2 = {(1, 1, 1), (1,−1, 1), (1, 1, x), (1, 1, y), (1, 1, xy), (1,−1, x), (1,−1, y), (1,−1, xy)},

G3 = {(1, 1, 1), (−1,−1,−1), (1, 1,−1), (1,−1, 1), (1,−1,−1), (−1, 1, 1), (−1, 1,−1), (−1,−1, 1)}.

Aording to Algorithm 1, we hoose some basis of G(F2), namely

B = (g2, g3, g4, g9, g17, g25, g74, g129, g257). Let us hek what type has that

basis. Knowing the value sets of 1-fold P�ster forms we deompose the group

G into 5 types. For the sake of simpliity of notation, we denote the type

Tj by its index j, for 1 ≤ j ≤ m; for example, the type T3 will be denoted

by 3. Hene, the type T of n-elements of group G will be n-tuple of indies

(j1, j2, . . . , jn) of types, where ∀n
i=11 ≤ ji ≤ m and n = dim G(F2).

Type 1 2 3 4 5

Cardinality 56 336 8 104 8

It follows that the type of our basis B is T = (1, 1, 1, 4, 2, 2, 5, 1, 1) and we

must �nd all bases in |T | = 178 862 731 407 360 possible systems of n vetors.

With the help of algorithm 2, we have found a basis in minimal type.

Last 10 from 117 heked types are presented in Table 1. As we an see, the

type (5, 4, 4, 4, 4, 3, 3, 3, 3) has the smallest ardinality between all the types

in whih basis of G(F2) exists.

AP

Type T |T | se. result

(5,3,3,3,1,1,1,1,1) 213909696 293.07 NOT EXISTS

(5,5,5,5,4,3,3,1,1) 251130880 269.96 NOT EXISTS

(5,5,5,4,3,3,3,1,1) 251130880 302.70 NOT EXISTS

(5,5,5,5,4,4,4,3,3) 285539072 314.83 NOT EXISTS

(5,5,5,4,4,4,3,3,3) 285539072 165.72 NOT EXISTS

(5,5,5,3,3,1,1,1,1) 287955360 316.66 NOT EXISTS

(5,5,5,5,5,3,2,1,1) 289766400 265.74 NOT EXISTS

(5,5,3,3,3,3,2,1,1) 289766400 343.82 NOT EXISTS

(5,5,5,5,5,4,4,4,4) 321868820 294.82 NOT EXISTS

(5,4,4,4,4,3,3,3,3) 321868820 153.97 EXISTS

Sum: 3850.03

Table 1: The results for the group of example 2.1.

The algorithm 1 has been improved yet. In [4℄ the autors showed that for

Witt rings, whih have −1 �= 1 in G, we an hoose suh a basis of minimal
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type that the distinguished element −1 is one of the vetor of that basis. In

the next step all bases of minimal type with one �xed vetor −1 are searhed.

Therefore, we an map a hoosen basis into all another ones suh that the

map preserves the vetor −1. In that way the �rst ondition of the Harrison-

Cordes riterion is ful�lled and we redue thea number of hoosen vetors in

eah basis to n − 1.
Another rationalization proposed in [4℄ onsists in oding the problem of

searhing of minimal type as a propositional formula and using newest SAT-

solvers � very e�etive tool for very�ng satis�ability of that formula. The

autors have showed that the time of �nding minimal type with the help of

SAT-solvers is shorter than in our algorithm 2.

We laim that algorithm 1 an be improved in another way too. We leave

it for our future work.
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