Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Tandori theorem concerning the sufficient condition for the unconditional a.e. convergence of orthogonal series is generalized for the bundle convergencein L2-space over a σ-finite von Neumann algebra. The result implies a noncommutative version of the Orlicz theorem proved earlier by Hensz, Jajte and Paszkiewicz.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
19--27
Opis fizyczny
Biblogr. 10 poz.
Twórcy
autor
- Department of Mathematics, University of Łódź, Banacha 22, 90-238 Łódź, Poland
Bibliografia
- [1] M. S. Goldstein, Theorems in almost everywhere convergence (in Russian), J. Operator Theory 6 (1981), pp. 233-311.
- [2] E. Hensz and R. Jajte, Pointwise convergence theorems in L2 over a von Neumann algebra, Math. Z. 193 (1986), pp. 413-429.
- [3] E. Hensz, R. Jajte and A. Paszkiewicz, The unconditional pointwise convergence in L2 over a von Neumann algebra, Colloq. Math. 69 (1995), pp. 167-178.
- [4] E. Hensz, R. Jajte and A. Paszkiewicz, The bundle convergence in von Neumann algebras and their L2 spaces, Studia Math. 120 (1996), pp. 23-46.
- [5] R. Jajte, Strong limit theorems in noncommutative L2 spaces, Lecture Notes in Math. 1477, Springer, Berlin-Heidelberg-New York 1991.
- [6] E. C. Lance, Ergodic theorem for convex sets and operator algebras, Invent Math. 37 (1976), pp. 201-214.
- [7] B. Le Gac and F. Móricz, On the bundle convergence of orthogonal series and SLLN in noncommutative L2 spaces, Acta Sei. Math. (Szeged) 64 (1998), pp. 575-599.
- [8] W. Or licz, Zur Theorie der orthogonalen Reihen, Bull. Internat. Acad. Polon. Sci. Sér. A (1927), pp. 81-115.
- [9] D. Petz, Quasi-uniform ergodic theorems in von Neumann algebra, Bull. London Math. Soc. 16 (1984), pp. 151-156.
- [10] K. Tandori, Über die orthogonalen Funktionen X (unbedingte Konvergenz), Acta Sei. Math. (Szeged) 23 (1962), pp. 185-221.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e7c97e9-eae4-465b-ae93-9765b258ea9e