PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synchronization of state-feedback-controlled doubly fed induction generator with the grid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents state feedback control with a linear-quadratic regulator of a doubly fed induction generator. Resonant terms are added to the plant model in order to provide disturbance rejection and reference tracking. A new approach to controlling a parameter varying linear model of the induction machine is presented, allowing to apply a linear-quadratic regulator to the doubly fed induction generator. The control scheme described herein is suitable for the doubly fed induction generator operating under unbalanced stator voltage conditions, because the controller with resonant terms is built in the stationary αβ coordinate system. In it, the positive and negative symmetrical sequences have equal frequencies. The paper highlights specific problems associated with state feedback control of the doubly fed induction generator, i.e. the process of generator connection to an unbalanced grid. In contrast with classical voltage-oriented cascade control methods, in state feedback control of a stand-alone doubly fed induction generator there is no separate rotor current controller. This may cause over-current problem during DFIG synchronization with the grid which has been solved in this paper. Voltage synchronization and grid operation of the generator were tested in a laboratory rig with a 7.5 kW wound-rotor induction machine.
Rocznik
Strony
675--685
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
autor
  • Institute of Control and Industrial Electronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warszawa, Poland
autor
  • Institute of Control and Industrial Electronics, Warsaw University of Technology, 75 Koszykowa St., 00-662 Warszawa, Poland
Bibliografia
  • [1] R. Cardenas, R. Pena, S. Alepuz, and G. Asher, “Overview of control systems for the operation of DFIGs in wind energy applications”, IEEE Trαns. Ind. Electron., vol. 60, no. 7, pp. 2776–2798, July 2013.
  • [2] A. Bocquel and J. Janning, “Analysis of a 300 MW Variable Speed Drive for Pump-Storage Plant Applications”, Eur. Conf. Power Electron. Appl. – EPE’05, pp. 1–10, Dresden, 2005.
  • [3] N. Mendis, K.M. Muttaqi, S. Perera, and S. Kamalasadan, “An Effective Power Management Strategy for a Wind – Diesel – Hydrogen-Based Remote Area Power Supply System to Meet Fluctuating Demands Under Generation Uncertainty”, IEEE Trαns Ind Appl, vol. 51, no. 2, pp. 1228–1238, March-April 2015.
  • [4] R. Peña, R. Cárdenas, J. Proboste, J. Clare, and G. Asher, “Wind-Diesel Generation Using Doubly Fed Induction Machines”, IEEE Trαns. Energy Conv., vol. 23, no. 1, pp. 202–214, March 2008.
  • [5] L. Wang, J-Y. Yu, and Y-T. Chen, “Dynamic stability improvement of an integrated offshore wind and marine-current farm using a flywheel energy-storage system”, IET Renew. Power Gener., vol. 5, no. 5, pp. 387‒396, Sept. 2011.
  • [6] H. Camblong, I.M. de Alegria, M. Rodriguez, and G. Abad, “Experimental evaluation of wind turbines maximum power point tracking controllers”, Energy Convers. Mαnαg., vol. 47, no. 18‒19, pp. 2846–2858, Nov. 2006.
  • [7] Xu Lie and Yi Wang,”Dynamic Modeling and Control of DFIGBased Wind Turbines Under Unbalanced Network Conditions”, IEEE Trαns. on Power Systems, vol. 22, no. 1, pp. 314‒323, Feb. 2007.
  • [8] J. Hu; J. Zhu; and D.G. Dorrell, “Predictive Direct Power Control of Doubly Fed Induction Generators Under Unbalanced Grid Voltage Conditions for Power Quality Improvement,” IEEE Trαns. on Sust. Energy, vol. 6, no. 3, pp. 943‒950, July 2015.
  • [9] L. Shang and J. Hu, “Sliding-Mode-Based Direct Power Control of Grid-Connected Wind-Turbine-Driven Doubly Fed Induction Generators Under Unbalanced Grid Voltage Conditions”, IEEE Trαns. Energy Conv., vol. 27, no. 2, pp. 362‒373, June 2012.
  • [10] X. Lie and P. Cartwright, “Direct Active and Reactive Power Control of DFIG for Wind Energy Generation”, IEEE Trαns Energy Conv., vol. 21, no. 3, pp. 750–758, Sept. 2006.
  • [11] D. Santos-Martin, J.L. Rodriguez-Amenedo, and S. Arnalte”, Direct Power Control Applied to Doubly Fed Induction Generator Under Unbalanced Grid Voltage Conditions”, IEEE Trαns Power Electron., vol. 23, no. 5, pp. 2328–2336, Sept. 2008.
  • [12] G. Abad, M.A. Rodriguez, G. Iwanski, and J. Poza, “Direct Power Control of Doubly-Fed-Induction- Generator-Based Wind Turbines Under Unbalanced Grid Voltage”, IEEE Trαns. Power Electron., vol. 25, no. 2, pp. 442–452, Feb. 2010.
  • [13] J. Hu, Y. He, L. Xu, and B.W. Williams, “Improved control of DFIG systems during network unbalance using PI-R current regulators”, IEEE Trαns. Ind. Electron., vol. 56, no. 2, pp. 439–451, Feb. 2009.
  • [14] B. Kedjar and K. Al-Haddad, “LQR with Integral Action Applied to a Wind Energy Conversion System Based on Doubly Fed Induction Generator”, IEEE 24th Cαn. Conf. Electr. Comput. Eng., pp. 717–722, Niagara Falls, Canada, 8‒11 May 2011.
  • [15] L. Shang, D. Sun, and J. Hu, “Sliding-Mode-Based Direct Power Control of Grid-Connected Voltage-Sourced Inverters under Unbalanced Network Conditions”, IET Power Electron., vol. 4, no. 5, pp. 570‒579, May 2011.
  • [16] G. Iwanski and W. Koczara, “DFIG-Based Power Generation System with UPS Function for Variable-Speed Applications”, IEEE Trαns. Ind. Electron., vol. 55, no. 8, pp. 3047–3054, Aug. 2008.
  • [17] G. Abad, J. López, M.A. Rodríguez, L. Marroyo, and G. Iwanski, “Doubly Fed Induction Machine: Modeling and Control for Wind Energy Generation”, Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2011.
  • [18] K. Zhou and J. Doyle, K. Glover, “Robust and Optimal Control”, Prentice Hall; 1996.
  • [19] W.J. Rugh and J.S. Shamma, “Research on gain scheduling”, Automatica, vol. 36, no. 10, pp. 1401–1425, Oct. 2000.
  • [20] S.Z. Chen, N.C. Cheung, Y. Zhang, M. Zhang, and X.M. Tang, “Improved grid synchronization control of doubly fed induction generator under unbalanced grid voltage”, IEEE Trαns Energy Convers, vol. 26, no. 3, pp. 799–810, Sept. 2011.
  • [21] G. Iwanski, P. Pura, and T. Luszczyk, “Properties and control of variable speed doubly fed induction generator”, 10th Int. Conf. Ecol. Veh. Renew. Energies, pp. 1–8, Monte carlo, Monaco, 31March – 2April 2015.
  • [22] G. Iwanski, T. Łuszczyk, and P. Pura, “Indirect Torque and Stator Reactive Power Control of Doubly Fed Induction Machine Connected to Unbalanced Power Network”, IEEE Trαns Energy Convers, vol. 31, no. 3, pp. 1202–1211, 2016.
  • [23] P. Rodríguez, A. Luna, I. Candela, R. Mujal, R. Teodorescu, and F. Blaabjerg, “Multiresonant Frequency-Locked Loop for Grid Synchronization of Power Converters under Distorted Grid Conditions”, IEEE Trαns Ind Electron, vol. 58, no. 1, pp.127–138, Jan. 2011.
  • [24] B. Ufnalski, A. Kaszewski, and L.M. Grzesiak, “Particle Swarm Optimization of the Multioscillatory LQR for a Three-Phase Four-Wire Voltage-Source Inverter with an LC Output Filter”, IEEE Trαns Ind Electron, vol. 62, no. 1, pp. 484–493, Jan. 2015.
  • [25] P. Pillay and M. Manyage, “Definitions of voltage unbalance”, IEEE Power Eng. Rev. Mαg., vol. 5, pp. 50‒51, May 2001.
  • [26] M. Szypulski and G. Iwanski, “Sensorless State Control of Stand-Alone Doubly Fed Induction Generator Supplying Nonlinear and Unbalanced Loads,” in IEEE Trαnsαctions on Energy Conversion, vol. 31, no. 4, pp. 1530‒1538, Dec. 2016.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e77c849-e26b-42b3-a328-aa67fc66f49b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.