PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of boundary conditions on acoustic signal features in reverberation plates - concept of study and initial results

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mechanical vibrations of plates are used in many branches of science including acoustics - for reverberation purposes. The paper takes up a topic of synthesis of artificial reverberation, one of the most important signal processors in audio engineering. Using a reverberation processor, it is convenient to have available adjustable features to simulate different types of phenomena depending on needs of the engineer. This paper describes results of measurements of a plate vibrations depending on its boundary conditions, and acoustic signals obtained by them. The measurements were performed using a test stand created for such experiments. It allows to implement different types of boundary conditions of the plate, as well as to excite the plate using an electrodynamic transducer and record the plate vibration using a contact microphone. Analysis of the acoustic signals obtained by the plate vibrations indicates that boundary conditions affect the signals features in terms of reverberation time as well as frequency content, which is perceptually significant for a listener.
Rocznik
Strony
art. no. 2024318
Opis fizyczny
Bibliogr. 33 poz., fot. kolor., rys., wykr.
Twórcy
  • AGH University of Krakow, al. Mickiewicza 30, Cracow, Poland
  • AGH University of Krakow, al. Mickiewicza 30, Cracow, Poland
autor
  • AGH University of Krakow, al. Mickiewicza 30, Cracow, Poland
Bibliografia
  • 1. J. Paulus, C. Uhle, J. Herre, M. Höpfel; A study on the preferred level of late reverberation in speech and music; In: Audio Engineering Society Conference: 60th International Conference: DREAMS (Dereverberation and Reverberation of Audio, Music, and Speech). Audio Engineering Society, 2016
  • 2. The Remarkable EMT140 Plate Reverb from 1957 https://www.vintagedigital.com.au/emt-140-plate-reverb/ (accessed on 28.03.2024)
  • 3. J.S. Rao; Dynamics of Plates; CRC Press, 1998
  • 4. T.D. Rossing, N.H. Fletcher; Nonlinear vibrations in plates and gongs; The Journal of the Acoustical Society of America, 1983, 73(1), 345-351
  • 5. P.M. Morse, K.U. Ingard; Theoretical Acoustics; Princeton University Press, 1987
  • 6. R. Szilard; Theories and Applications of Plate Analysis: Classical, Numerical and Engineering Methods; John Wiley & Sons Inc., 2004
  • 7. D. Schaeffer, M. Golubitsky; Boundary Conditions and Mode Jumping in the Buckling of a Rectangular Plate; Communications in Mathematical Physics, 1979, 69(3), 209-236
  • 8. M.A. Horn; Nonlinear boundary stabilization of a von Kármán plate via bending moments only; In: System Modelling and Optimization; Springer, Berlin-Heidelberg, 1994, 706-715
  • 9. J.E.M. Rivera, H.P. Oquendo, M.L. Santos; Asymptotic behavior to a von Kármán plate with boundary memory conditions; Nonlinear Analysis: Theory, Methods & Applications, 2005, 62(7), 1183-1205
  • 10. L. Majkut, R. Olszewski; Zastosowanie radialnych funkcji bazowych do analizy drgań własnych płyty z otworami (Application of radial basis functions to dynamic analysis of a plate with holes); Technika Transportu Szynowego, 2015, 22(12), 1002-1005
  • 11. L. Majkut, R. Olszewski; Zastosowanie radialnych funkcji bazowych do analizy drgań własnych płyty dwumateriałowej (Application of radial basis functions to dynamic analysis of a two material plate); Technika Transportu Szynowego, 2017, 24(12), 101-105
  • 12. S. Ilanko; Vibration and Post-buckling of In-Plane Loaded Rectangular Plates Using a Multiterm Galerkin’s Method; Journal of Applied Mechanics, 2002, 69(5), 589-592
  • 13. S. Bilbao, K. Arcas, A. Chaigne; A Physical Model of Plate Reverberation; In: Proceedings of the IEEE Conference on Acoustics, Speech, and Signal Processing (ICASSP), Toulouse, France, 2006
  • 14. S. Bilbao; A Digital Plate Reverberation Algorithm; Journal of the Audio Engineering Society, 2007, 55(3), 135-144
  • 15. M. Ducceschi, C.J. Webb; Plate reverberation: Towards the development of a real-time physical model for the working musician; In: Proceedings of the 22th International Congress on Acoustics, Buenos Aires, 2016
  • 16. M. Ducceschi; Digital plate reverb models; In: PON Seminars, Dept. of Mathematics, University of Bologna, 2022
  • 17. R. Russo; Physical Modeling and Optimisation of a EMT 140 Plate Reverb; Master’s Thesis, Aalborg University, 2021
  • 18. M.A. Martínez Ramírez, E. Benetos, J.D. Reiss; Modeling Plate and Spring Reverberation Using A DSP-Informed Deep Neural Network; ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 2020, 241-245; DOI: 10.1109/ICASSP40776.2020.9053093
  • 19. A. Korytowski, R. Olszewski, M. Pluta; Plate reverberators with adjustable features - concept of study and test stand; Vibrations in Physical Systems, 2023, 34(2), 2023204; DOI: doi.org/10.21008/j.0860-6897.2023.2.04
  • 20. M. Sohn, K. Kim, S. Hong, J. Kim; Dynamic Mechanical Properties of Particle-Reinforced EPDM Composites; Journal of Applied Polymer Science, 2002, 87(10), 1595-1601; DOI: 10.1002/app.11577
  • 21. Miscellaneous Sound Equipment - Section 1: Reverberation plate EMT 140; EMT Plate Reverberation Technical Instructions; http://www.bbceng.info/ti/eqpt/EMT140.pdf (accessed on 2024.12.09)
  • 22. Documentation on discrete Fast Fourier transform - numpy library for Python. numpy.fft.fft - NumPy v1.26 Manual (accessed on 2024.03.28)
  • 23. M. Amabili; Nonlinear vibrations of rectangular plates with different boundary conditions: theory and experiments; Dipartimento di Ingegneria Industriale, 2004, 82(31-32), 2587-2605; DOI: 10.1016/j.compstruc.2004.03.077
  • 24. H. Cho, B. Jeong, M. Yu; Nonlinear hardening and softening resonances in micromechanical cantilever-nanotube systems originated from nanoscale geometric nonlinearities; International Journal of Solids and Structures, 2012, 49(15-16), 2059-2065; DOI: 10.1016/j.ijsolstr.2012.04.016
  • 25. A. J. Houtsma, J. Smurzynski; Pitch identification and discrimination for complex tones with many harmonics; The Journal of the Acoustical Society of America, 1990, 87(1), 304-310; DOI: 10.1121/1.399297
  • 26. Z. Meng, F. Zhao, M. He; The Just Noticeable Difference of Noise Length and Reverberation Perception, Conference: Communications and Information Technologies ISCIT '06, 2006
  • 27. Audio Commons - Documentation of Timbral Models tools; University of Surrey, https://github.com/AudioCommons/timbral_models/tree/master (accessed on 2024.03.28)
  • 28. S. Hatano, T. Hashimoto; Booming index as a measure for evaluating booming sensation; The 29th International Congress and Exhibition on Noise Control Engineering, 2000
  • 29. D5.8: Release of timbral characterisation tools for semantically annotating non-musical content, Audio Commons; https://audiocommons.github.io/materials/ (accessed on 2024.03.28)
  • 30. J. Blaauwendraad; Plates and FEM, Springer, 2010
  • 31. P. K. Nkounhawa, D. Ndapeu; Analysis of the Behavior of a Square Plate in Free Vibration by FEM in Ansys; World Journal of Mechanicsm, 2020, 10(2), 11-25; DOI: 10.4236/wjm.2020.102002
  • 32. C. E. Etin-osa, J. I. Achebo; Analysis of Optimum Butt Welded Joint for Mild Steel Components Using FEM (ANSYS); Advances in Applied Sciences, 2017, 2(6), 100-109; DOI: 10.11648/j.aas.20170206.12
  • 33. S. Moaveni; Finite Element Method: Theory and Application with ANSYS; Minnesota State University, 2015
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e766ca6-3e42-4ea4-ada1-215333972dd5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.