PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Seismically induced soft-sediment deformation in crevasse-splay microdelta deposits (Middle Miocene, central Poland) – reply

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We expected that our paper on the crevasse-splay microdelta (Chomiak et al., 2019) would arouse the interest of other researchers for at least two reasons. First, this is the first such palaeoform discovered and described within the Mid-Miocene lignite seam in Poland. Second, the microdelta siliciclastic deposits are strongly deformed both ductile and brittle. Therefore, we would like to thank Tom van Loon for his effort to comment on our article, including his words of appreciation, and above all, for pointing out some of the terminological and interpretative shortcomings. Our reply will be in line with the issues discussed in his comment.
Słowa kluczowe
Rocznik
Strony
429--433
Opis fizyczny
Bibliogr. 44 poz., rys.
Twórcy
  • Adam Mickiewicz University, Institute of Geology, Krygowski 12, 61-680 Poznań, Poland
  • Adam Mickiewicz University, Institute of Geology, Krygowski 12, 61-680 Poznań, Poland
  • Konin Lignite Mine, 9 600-lecia Avenue, 62-540 Kleczew, Poland
autor
  • Adam Mickiewicz University, Institute of Geology, Krygowski 12, 61-680 Poznań, Poland
  • Adam Mickiewicz University, Institute of Geology, Krygowski 12, 61-680 Poznań, Poland
Bibliografia
  • 1. Alsop, G.I., Marco, S., 2011. Soft-sediment deformation within seismogenic slumps of the Dead Sea Basin. Journal of Structural Geology, 33: 433-457.
  • 2. Bristow, C.S., Skelly, R.L., Ethridge, F.G., 1999. Crevasse splays from the rapidly aggrading, sand-bed, braided Niobrara River, Nebraska: effect of base-level rise. Sedimentology, 46: 1029-1047.
  • 3. Burns, C., Mountney, N.P., Hodgson, D.M., Colombera, L., 2017. Anatomy and dimensions of fluvial crevasse-splay deposits: examples from the Cretaceous Castlegate Sandstone and Neslen Formation, Utah, U.S.A. Sedimentary Geology, 351: 21-35.
  • 4. Cahoon, D.R., White, D.A., Lynch, J.C., 2011. Sediment infilling and wetland formation dynamics in an active crevasse splay of the Mississippi River delta. Geomorphology, 131: 57-68.
  • 5. Chomiak, L., Wąchocki, R., Maciaszek, P., Widera, M., Zieliński, T., 2019. Seismically-induced soft-sediment deformation in crevasse-splay microdelta deposits (Middle Miocene, central Poland). Geological Quarterly, 63 (1): 162-177.
  • 6. Ciarcia, S., Vitale, S., 2013. Sedimentology, stratigraphy and tectonics of evolving wedge-top depozone: Ariano Basin, southern Apennines, Italy. Sedimentary Geology, 290: 27-46.
  • 7. Cymerman, Z., 2014. Structural and kinematic analysis and the Mesoproterozoic tectonic evolution of the Suwałki Massif and its surroundings (NE Poland) (in Polish with English summary). Prace Państwowego Instytutu Geologicznego-Państwowego Instytutu Badawczego, 201.
  • 8. Davies-Vollum, K.S., Kraus, M.J., 2001. A relationship between alluvial backswamps and avulsion cycles: an example from the Willwood Formation of the Bighorn Basin, Wyoming. Sedimentary Geology, 140: 235-245.
  • 9. Dąbrowski, M., Grasemann, B., 2014. Domino boudinage under layer-parallel simple shear. Journal of Structural Geology, 68A: 58-65.
  • 10. Farrell, K.M., 2001. Geomorphology, facies architecture, and high-resolution, non-marine sequence stratigraphy in avulsion deposits, Cumberland Marshes, Saskatchewan. Sedimentary Geology, 139: 93-150.
  • 11. Fielding, C.R., 1986. Fluvial channel and overbank deposits from the Westphalian of the Durham coalfield, NE England. Sedimentology, 33: 119-140.
  • 12. Flores, R.M., 1993. Geologic and geomorphic controls of coal development in some Tertiary Rocky Mountain basins, USA. International Journal of Coal Geology, 23: 43-73.
  • 13. Gębica, P., Sokołowski, T., 2001. Sedimentological interpretation of crevasse splays formed during the extreme 1997 flood in the upper Vistula river valley (South Poland). Annales Societatis Geologorum Poloniae, 71: 53-62.
  • 14. Goscombe, B.D., Passchier, C.W., Hand, M., 2004. Boudinage classification: endmember boudin types and modified boudin structures. Journal of Structural Geology, 26: 739-763.
  • 15. Gouw, M.J.P., Autin, W.J., 2008. Alluvial architecture of the Holocene Lower Mississippi Valley (U.S.A.) and a comparison with the Rhine-Meuse delta (The Netherlands). Sedimentary Geology, 204: 106-121.
  • 16. Guion, P.D., 1984. Crevasse splay deposits and roof-rock quality in the Three Quarters Seam (Carboniferous) in the East Midlands Coalfield, U.K. Sedimentology of Coal and Coal-bearing Sequences. International Association of Sedimentologists, Special Publication, 7: 291-308.
  • 17. Horne, J.C., Ferm, J.C., Caruccio, F.T., Baganz, B.P., 1978. Depositional models in coal exploration and mine planning in Appalachian Region. American Association of Petroleum Geologist Bulletin, 62: 2379-2411.
  • 18. Jackson, M., Hudec, M., 2017. Salt-Tectonic Systems. Cambridge University Press, Cambridge.
  • 19. Kasiński, J.R., 1986. Sedimentary models of small lignite deposits: examples from the Polish Neogene (in Polish with English summary). Przegląd Geologiczny, 34: 189-197.
  • 20. Kasiński, J.R., 2015. The karst phenomena in the Mesozoic basement of the Złoczew lignite deposits against structures of the Poznań-Kalisz fault zone (in Polish). In: Proceedings of the IV National Scientific Conference. Mineral Deposits: the Prospection, Exploration, Documentation (ed. M. Pańczyk): 31-32. Państwowy Instytut Geologiczny, Warszawa.
  • 21. Kirschbaum, M.A., McCabe, P.J., 1992. Controls on the formation of coal and on the development of anastomosed fluvial systems in the Cretaceous Dakota Formation of southern Utah. Sedimentology, 39: 581-598.
  • 22. Markiewicz, A., Becker, R., 2009. The original extent of the Oldest Halite (Na1) in the southern part of the Fore-Sudetic Monocline (SW Poland) (in Polish with English summary). Geologia, 35: 327-348.
  • 23. McClay, K.R., Ellis, P.G., 1987. Geometries of extensional fault systems developed in model experiments. Geology, 15: 341-344.
  • 24. Michaelsen, P., Henderson, R.A., Crosdale, P.J., Mikkelsen, S.O., 2000. Facies architecture and depositional dynamics of the Upper Permian rangal coal measures, Bowen Basin, Australia. Journal of Sedimentary Research, 70: 879-895.
  • 25. Moretti, M., Owen, G., Tropeano, M., 2011. Soft-sediment deformation induced by sinkhole activity in shallow marine environments: a fossil example in the Apulian Foreland (Southern Italy). Sedimentary Geology, 235: 331-342.
  • 26. Obermeier, S.F., Olson, S.M., Green, R.A., 2005. Field occurrences of liquefaction-induced features: a primer for engineering geologic analysis of paleoseismic shaking. Engineering Geology, 76: 209-234.
  • 27. Pérez-Arlucea, M., Smith, N.D., 1999. Depositional patterns following the 1870s avulsion of the Saskatchewan River (Cumberland Marshes, Saskatchewan, Canada). Journal of Sedimentary Research, 69: 62-73.
  • 28. Piwocki, M., 1992. Exient and correlations of main groups of the Tertiary lignite seams on Polish platiorm area (in Polish with English summary). Przegląd Geologiczny, 40: 281-286.
  • 29. Sims, J.D., Garvin, C.D., 1995. Recurrent liquefaction at Soda Lake, California, induced by the 1989 Loma Prieta earthquake, and 1990 and 1991 aftershocks: implications for paleoseismicity studies. Seismological Society of America Bulletin, 85: 51-65.
  • 30. Smith, N.D., Cross, T.A., Dufficy, J.P., Clough, S.R., 1989. Anatomy of an avulsion. Sedimentology, 36: 1-23.
  • 31. Stewart, S.A., Argent, J.D., 2000. Relationship between polarity of extensional fault arrays and presence of detachments. Journal of Structural Geology, 22: 693-711.
  • 32. Teisseyre, A.K., 1985. Recent overbank deposits of the Sudetic valleys, SW Poland. Part I: General environmental characteristics (with examples from the upper River Bóbr drainage basin) (in Polish with English summary). Geologia Sudetica, 20: 113-195.
  • 33. Van Loon, A.J., 2019. Seismically-induced soft-sediment deformation in crevasse-splay microdelta deposits (Middle Miocene, central Poland) - comment. Geological Quarterly, 63 (2): 424-428.
  • 34. Van Toorenenburg, K.A., Donselaar, M.E., Weltje, G.J., 2018. The life cycle of crevasse splays as a key mechanism in the aggradation of alluvial ridges and river avulsion. Earth Surface Processes and Landforms, 43: 2409-2420.
  • 35. Vendeville, B., 1991. Mechanisms generating normal fault curvature: a review illustrated by physical models. Geological Society Special Publication, 56: 241-249.
  • 36. Yang, R., van Loon, A.J., 2016. Early Cretaceous slumps and turbidites with peculiar soft-sediment deformation structures on Lingshan Island (Qingdao, China) indicating a tensional tectonic regime. Journal of Asian Earth Sciences, 129: 206-219.
  • 37. Widera, M., 2007. Lithostratigraphy and Palaeotectonics of the sub-Pleistocene Cenozoic of Wielkopolska (in Polish with English summary). Adam Mickiewicz University Press, Poznań.
  • 38. Widera, M., 2013. Changes of the lignite seam architecture - a case study from Polish lignite deposits. International Journal of Coal Geology, 114: 60-73.
  • 39. Widera, M., 2016a. Depositional environments of overbank seditmentation in the lignite-bearing Grey Clays Member: new evidence from Middle Miocene deposits of central Poland. Sedimentary Geology, 335: 150-165.
  • 40. Widera, M., 2016b. Genetic classification of Polish lignite deposits: a review. International Journal of Coal Geology, 158: 107-118.
  • 41. Widera, M., 2017. Sedimentary breccia formed atop a Miocene crevasse-splay succession in central Poland. Sedimentary Geology, 360: 96-104.
  • 42. Widera, M., Chomiak, L., Gradecki, D., Wachocki, R., 2017. Crevasse splay deposits from the Miocene of central Poland near Konin (in Polish with English summary). Przegląd Geologiczny, 65: 251-258.
  • 43. Zieliński, T., 2014. Sedimentology. River and Lake Deposits (in Polish). Adam Mickiewicz University Press, Poznań.
  • 44. Zwoliński, Z., 1992. Sedimentology and geomorphology of overbank flows on meandering river floodplains. Geomorphology, 4: 367-379.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e730980-b792-40c8-9983-240372d2193f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.