PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Internal Corrosion Damage Mechanisms of the Underground Ferrous Water Pipelines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Internal water pipe corrosion is a complicated problem due to the interaction of water quality parameters with pipe wall. This study presents investigations of internal pipe surface corrosion mechanisms related to water physicochemical. Samples of water and corrosion-damaged ductile cast iron (30+ years) and galvanized steel pipe (15-20 years) were collected at in-situ condition from Addis Ababa city water distribution system. Scanning electron microscopy and optical microscopy were used to examine the pipes' corrosion morphology and microstructures, respectively. Additionally, Mountains 9 surface analysis software was used for further pitting corrosion characterization.To identify the causes of internal pipe corrosion, water physicochemical analyses were conducted by using inoLab pH 7310P, DR 900, Palintest Photometer 7100, and Miero 800. Water physicochemical test indicates: CaCO3 is 77 - 215 ppm, pH is 7.05 – 7.86, total dissolved solids (TDS) is 84.10 -262.8 ppm, ClO2 is 0 – 0.5 ppm, and dissolved oxygen (80-81 ppb). From water test results, major causes of internal pipe corrosion damage mechanisms were identified as dissolved oxygen, CaCO3, TDS, ClO2,and resistivity of water which initiates a differential cell that accelerates pipe corrosion. Using Mountain 9 surface analysis software, corrosion morphology and pitting features were characterized. The outputs of this paper will be helpful for water distribution and buried infrastructure owners to investigate corrosion damage mechanisms at early stage. To manage corrosion mechanisms, water supply owners need to conduct frequent inspections, recording of pipe data, testing of water quality, periodic pipelines washing, and apply preventative maintenance.
Twórcy
  • Department of Mechanical Engineering, Adama Science and Technology University, Ethiopia
  • Department of Mechanical Engineering, Adama Science and Technology University, Ethiopia
  • Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, P.O. Box 8600, Norway
  • Faculty of Mechanical Engineering, Jimma University, Ethiopia
Bibliografia
  • 1. Mahmoodian M., Aryai V. Structural failure assessment of buried steel water pipes subject to corrosive environment. Urban Water Journal. 2017; 14: 1–8. DOI: 10.1080/1573062X.2017.1325500.
  • 2. Treesa B., Jaspreeth N., Ranjith S.K., Jiji C.V., NDT and E international visual inspection and characterization of external corrosion in pipelines using deep neural network. NDT and E International. 2019; 107: 102134. DOI: 10.1016/j.ndteint.2019.102134.
  • 3. Hu J., Dong H., Ling W., Qu J., Qiang Z. Impacts of water quality on the corrosion of cast iron pipes for water distribution and proposed source water switching strategy. Water Research. 2017; 129: 428–435. DOI: 10.1016/j.watres.2017.10.065.
  • 4. Sanjuan-Delmás D., et al. Environmental assessment of different pipelines for drinking water transport and distribution network in small to medium cities : a case from Betanzos, Spain. Journal of Cleaner Production. 2014; 66: 588–598. DOI: 10.1016/j.jclepro.2013.10.055.
  • 5. Sun H., Shi B., Yang F., Wang D. Effects of sulfate on heavy metal release from iron corrosion scales in drinking water distribution system. Water Research. 2017; 114: 69–77. DOI: 10.1016/j.watres.2017.02.021.
  • 6. Li M., Liu Z., Chen Y., Hai Y. Characteristics of iron corrosion scales and water quality variations in drinking water distribution systems of different pipe materials. Water Research. 2016; 106: 593–603. DOI: 10.1016/j.watres.2016.10.044.
  • 7. Cui J., Wang D., Ma N. Case studies on the probabilistic characteristics of ultimate strength of stiffened panels with uniform and non-uniform localized corrosion subjected to uniaxial and biaxial thrust. International Journal of Naval Architecture and Ocean Engineering. 2018; 11(1): 97–118. DOI: 10.1016/j.ijnaoe.2018.02.011.
  • 8. Hou Y., Lei D., Li S., Yang W., Li C. Experimental investigation on corrosion effect on mechanical properties of buried metal pipes. International Journal of Corrosion. 2016; 5808372. DOI: 10.1155/2016/5808372.
  • 9. Vanaei H.R., Eslami A., Egbewande A. A review on pipeline corrosion, in-line inspection (ILI), and corrosion growth rate models. International Journal of Pressure Vessels and Piping. 2017; 149: 43–54. DOI: 10.1016/j.ijpvp.2016.11.007.
  • 10. García-mora B., Debón A., Santamaría C., Carrión A. Modelling the failure risk for water supply networks with interval-censored data. Reliability Engineering and System Safety. 2015; 144: 311–318. DOI: 10.1016/j.ress.2015.08.003.
  • 11. Shuai Y., Shuai J., Xu K. Probabilistic analysis of corroded pipelines based on a new failure pressure model. Engineering Failure Analysis. 2017; 81: 216–233. DOI: 10.1016/j.engfailanal.2017.06.050.
  • 12. Lee H., Rasheed U., Kong M. A study on the comparison of corrosion in water supply pipes due to tap water (TW) and reclaimed water (RW). Water. 2018; 10(4): 496. DOI: 10.3390/w10040496.
  • 13. Zakowski K., Darowicki K., et al. Case studies in construction materials electrolytic corrosion of water pipeline system in the remote distance from stray currents – Case study. Case Studies in Construction Materials. 2016; 4: 116–124. DOI: 10.1016/j.cscm.2016.03.002.
  • 14. Noble F., Stief P., Dantan J., Etienne A., Siadat A. Prediction of corroded pipeline performance based on dynamic reliability models. Procedia CIRP. 2019; 80: 518–523, 2019. DOI: 10.1016/j.procir.2019.01.093.
  • 15. Wasim M., Li C., Robert D.J., Mahmoodian M., Setunge S. Experimental investigation of factors influencing external corrosion of buried pipes. Fourth International Conference on Sustainable Construction Materials and Technologies, Las Vegas, USA 2016.
  • 16. Wasim M., Shoaib S., Inamuddin N.M.M., Asiri A.M. Factors influencing corrosion of metal pipes in soils. Environtal Chemistry Letters. 2018; 16: 861–87989. DOI: 10.1007/s10311-018-0731-x.
  • 17. Liu D., Jin J., Liang S., Zhang J. Characteristics of water quality and bacterial communities in three water supply pipelines. Royal Society of Chemistry. 2019; 7: 3504–4091. DOI: 10.1039/c8ra08645a.
  • 18. ISO 25178-2 Geometrical product specifications (GPS) — Surface texture: Areal — Part 2: Terms, definitions and surface texture parameters, 2012, https://www.iso.org/standard/42785.html.
  • 19. World Health Organization, Guidelines for Drinking-water Quality. 4th Ed. 2011.
  • 20. Shams D.F., Islam S., et al. Characteristics of pipe corrosion scales in untreated water distribution system and effect on water quality in Peshawar, Pakistan. Environmental Science and Pollution Research. 2019; 26: 5794–5803. DOI: 10.1007/s11356-018-04099-6.
  • 21. Alamineh E.A. Study of iron pipe corrosion for water distribution system and its effect in Addis Ababa City; Ethiopia. American Journal of Environmental Sciences. 2018. DOI: 10.3844/ajessp.2018.
  • 22. Vertova A., Miani and et al. Chlorine dioxide degradation issues on metal and plastic water pipes tested in parallel in a semi-closed system. Environmental Research and Public Health. 2019; 16(22): 4582. DOI: 10.3390/ijerph16224582.
  • 23. Chowdhury R.R., Alam M.M., Islam A.K.M.S. Numerical modeling of turbulent flow through bend pipes. Mechanical Engineering Research Journal. 2017; 10: 14–19.
  • 24. Shin S., Lee G., Ahmed U., Lee Y., Na J., Han C. Risk-based underground pipeline safety management considering corrosion effect. Journal of Hazardous Materials. 2018; 342: 279–289. DOI: 10.1016/j.jhazmat.2017.08.029.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e72cf63-ee9c-4aab-b496-48f84c97d451
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.