Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
When a frequency domain sensor is under the effect of an input stimulus, there is a frequency shift at its output. One of the most important advantages of such sensors is their converting a physical input parameter into time variations. In consequence, changes of an input stimulus can be quantified very precisely, provided that a proper frequency counter/meter is used. Unfortunately, it is well known in the time-frequency metrology that if a higher accuracy in measurements is needed, a longer time for measuring is required. The principle of rational approximations is a method to measure a signal frequency. One of its main properties is that the time required for measuring decreases when the order of an unknown frequency increases. In particular, this work shows a new measurement technique, which is devoted to measuring the frequency shifts that occur in frequency domain sensors. The presented research result is a modification of the principle of rational approximations. In this work a mathematical analysis is presented, and the theory of this new measurement method is analysed in detail. As a result, a new formalism for frequency measurement is proposed, which improves resolution and reduces the measurement time.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
45--56
Opis fizyczny
Bibliogr. 22 poz., rys., wykr., wzory
Twórcy
autor
- Posgrado en Física de Materiales, Centro de Investigación Cientifíca y Educación Superior de Ensenada, Carretera Ensenada-Tijuana 3918, Zona Playitas, 22860 Ensenada, B. C., Mexico
autor
- Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Carretera Tijuana-Ensenada Km. 107, Pedregal Playitas, 22860 Ensenada, B. C., Mexico
autor
- Universidad Autónoma de Baja California, Instituto de Ingeniería, Calle de la Normal S/N y Blvd. Benito Juárez Col. Insurgentes Este Mexicali B. C., Mexico
autor
- Universidad Autónoma de Baja California, Facultad de Ingeniería, Calle de la Normal S/N y Blvd. Benito Juárez Col. Insurgentes Este Mexicali B. C., Mexico
autor
- Universidad Autónoma de Baja California, Instituto de Ingeniería, Calle de la Normal S/N y Blvd. Benito Juárez Col. Insurgentes Este Mexicali B. C., Mexico
Bibliografia
- [1] Filippov, P., Strizhak, P.E., Vlasenko, N.V., Kochkin, Y.N., Serebrii, T.G. (2014). Adsorption-Desorption Dynamics of Alcohols on H-Beta and H-CMK Zeolites Nanocrystallites Studied by Quartz Crystal Microbalance Method. Adsorption Science & Technology, 32(10), 807-820.
- [2] Afzal, N., Iqbal, A., Mujahid, Schirhagl. (2013). Advanced vapor recognition materials for selective and fast responsive surface acoustic wave sensors: A review. Analytica Chimica Acta, 787, 36- 49.
- [3] Arnau, A. (2008). Review of Interface Electronic Systems for AT-cut Quartz Crystal Microbalance Applications in Liquids. Sensors, 8(1), 370-411.
- [4] Casteleiro-Roca, J.L., Calvo-Rolle, J.L., Meizoso-Lopez, M.C., Piñón-Pazos, A., Rodríguez-Gómez, B.A. (2014). New approach for the QCM sensors characterization. Sensors and Actuators A: Physical, 207, 1-9.
- [5] Ishii, R., Naganawa, R., Nishioka, M., Hanaoka, T. (2013). Microporous organic-inorganic nanocomposites as the receptor in the QCM sensing of toluene vapors. Analytical sciences: the international journal of the Japan Society for Analytical Chemistry, 29, 283-289.
- [6] Bhasker Raj, V., Singh, H., Nimal, A.T., Tomar, M., Sharma, M.U., Gupta, V. (2013). Effect of metal oxide sensing layers on the distinct detection of ammonia using surface acoustic wave (SAW) sensors. Sensors and Actuators B: Chemical, 187, 563-573.
- [7] Kikuchi, M., Shiratori, S. (2005). Quartz crystal microbalance (QCM) sensor for CH3SH gas by using polyelectrolyte-coated sol-gel film. Sensors and Actuators B: Chemical, 108(1), 564-571.
- [8] Bein, T., Mo, S., Mintova, S., Valtchev, V., Schoeman, B., Sterte, J. (1997). Growth of silicalite films on pre-assembled layers of nanoscale seed crystals on piezoelectric chemical sensors. Advanced Materials, 9(7), 585-589.
- [9] Kirianaki, N.V., Yurish, S.Y., Shpak, N.O. (2001). Methods of dependent count for frequency measurements. Measurement, 29(1), 31-50.
- [10] Kalisz, J. (2003). Review of methods for time interval measurements with picosecond resolution. Metrologia, 41(1), 17.
- [11] Johansson, S. (2005). New frequency counting principle improves resolution. Frequency Control Symposium and Exposition. Proc. of the 2005 IEEE International, 628–635.
- [12] Sergiyenko, O., Hernandez Balbuena, D., Tyrsa, V., Rosas Mendez, P.L.A., Rivas Lopez, M., Hernandez, W., Podrygalo, M., Gurko, A. (2011). Analysis of jitter influence in fast frequency measurements. Measurement, 44(7), 1229-1242.
- [13] Murrieta-Rico, F.N., Mercorelli, P., Sergiyenko, O.Y., Petranovskii, V., Hernández-Balbuena, D., Tyrsa, V. (2015). Mathematical modelling of molecular adsorption in zeolite coated frequency domain sensors. IFAC PapersOnLine, 48(1), 41-46.
- [14] Sergiyenko, O.Y. (2016). The mediant method for fast mass/concentration detection in nanotechnologies. International Journal of Nanotechnology, 13(1−3), 238-249.
- [15] Hernandez Balbuena, D., Sergiyenko, O., Tyrsa, V., Burtseva, L., Rivas Lopez, M. (2009). Signal frequency measurement by rational approximations. Measurement, 42(1), 136-144.
- [16] Murrieta-Rico, F.N., Yu, O., Sergiyenko, Petranovskii, V., Hernandez Balbuena, D., Lindner, L., Tyrsa, V., Rivas-Lopez, M., Nieto-Hipolito, J.I., Karthashov, V.M. (2016). Pulse width influence in fast frequency measurements using rational approximations. Measurement, 86, 67-78.
- [17] Jansson, P.A. (1998). Deconvolution of Images and Spectra. New York: J. Wiley & Sons.
- [18] Yu, L., Ma, X., Wu, T., Ma, Y., Shen, D., Kang, Q. (2016). Monitor the Processes of Ice Film Disappearance under a Stimulant Convection Condition and Absorption Ethanol Vapor to Ice by a Quartz Crystal Microbalance. International Journal of Electrochemical Science, 11(4), 2595-2611.
- [19] Sasaki, I., Tsuchiya, H., Nishioka, M., Sadakata, M., Okubo, T. (2002). Gas sensing with zeolite-coated quartz crystal microbalances-principal component analysis approach. Sensors and Actuators B: Chemical, 86(1), 26-33.
- [20] Sauerbrey, G. (1959). Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung. Zeitschrift für physik, 155(2), 206-222.
- [21] Boyes, W. (2009). Instrumentation Reference Book. Butterworth-Heinemann.
- [22] Allan, D.W., Barnes, J.A. (1981). A modified “Allan variance” with increased oscillator characterization ability. Thirty Fifth Annual Frequency Control Symposium IEEE.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e7235b7-121b-4411-a170-281060d7b119