PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Comparison of an impulse and a reaction turbine stage for an ORC power plant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Turbine stages can be divided into two types: impulse stages and reaction stages. The advantages of one type over the second one are generally known based on the basic physics of turbine stage. In this paper these differences between mentioned two types of turbines were indicated on the example of single stage turbines dedicated to work in organic Rankine cycle (ORC) power systems. The turbines for two ORC cases were analysed: the plant generating up to 30 kW and up to 300 kW of net electric power, respectively. Mentioned ORC systems operate with different working fluids: DMC (dimethyl carbonate) for the 30 kW power plant and MM (hexamethyldisiloxane) for the 300 kW power plant. The turbines were compared according to three major issues: thermodynamic and aerodynamic performance, mechanical and manufacturing aspects. The analysis was performed by means of the 0D turbomachinery theory and 3D computational aerodynamic calculations. As a result of this analysis, the paper indicates conclusions which type of turbine is a recommended choice to use in ORC systems taking into account the features of these systems.
Rocznik
Strony
137--157
Opis fizyczny
Bibliogr. 18 poz., rys., wykr.
Twórcy
  • Institute of Fluid Flow Machinery Polish Academy of Sciences, Centre of Heat and Power Engineering, Turbine Department, Fiszera 14, 80-231 Gdańsk, Poland
  • Institute of Fluid Flow Machinery Polish Academy of Sciences, Centre of Heat and Power Engineering, Turbine Department, Fiszera 14, 80-231 Gdańsk, Poland
  • Institute of Fluid Flow Machinery Polish Academy of Sciences, Centre of Heat and Power Engineering, Turbine Department, Fiszera 14, 80-231 Gdańsk, Poland
  • Institute of Fluid Flow Machinery Polish Academy of Sciences, Centre of Heat and Power Engineering, Turbine Department, Fiszera 14, 80-231 Gdańsk, Poland
  • Institute of Fluid Flow Machinery Polish Academy of Sciences, Centre of Heat and Power Engineering, Turbine Department, Fiszera 14, 80-231 Gdańsk, Poland
  • Institute of Fluid Flow Machinery Polish Academy of Sciences, Centre of Heat and Power Engineering, Turbine Department, Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
  • [1] Perycz S.: Steam and Gas Turbines. Ossolineum, Wrocław Warszawa Kraków 1992 (in Polish).
  • [2] Japikse D., Baines N.C.: Introduction to Turbomachinery. Concepts ETI, 1994.
  • [3] Dixon S.L.: Fluid Mechanics and Themodynamics of Turbomachinery (5th Edn.). Pergamon Press, 2005.
  • [4] Fiaschi D., Manfrida G., Maraschiello F.: Thermo-fluid dynamics preliminary design of turbo-expanders for ORC cycles. Appl. Energ.. 97(2012), 601–608.
  • [5] Pini M., Perisco G., Casati E., Dossena V.: Preliminary design of a centrifugal turbine for ORC applications. In: Proc. 1st Int. Sem. on ORC Power Systems ORC 2011, Delft 2011.
  • [6] Spadacini C., Rizzi D., Saccilotto C., Salgorollo S., Centemeri L.: The radial outflow turbine technology. In: Proc. 2nd Int. Sem. on ORC Power Systems ASME ORC 2013, Rotterdam 2013.
  • [7] Harinck J., Pasquale D., Pecnik R., van Buijtenen J., Colonna L.: Performance improvement of a radial organic Rankine cycle turbine by means of automated computational fluid dynamic design. Proc. Inst. Mech. Eng. A J. Power Energy 227(2013), 637–645.
  • [8] Klonowicz P., Bröggemann D.: 2D unsteady RANS simulations of an organic vapor partial admission turbine. In: Proc. 2nd Int. Sem. on ORC Power Systems ASME ORC 2013, Rotterdam 2013.
  • [9] Kiciński J., Żywica G.: Steam Microturbines in Distributed Cogeneration. Springer International Publishing, 2014.
  • [10] Weiss A.P., Popp T., Müller J., Brüggemann , Preissinger M.: Experimental characterization and comparison of an axial and a cantilever micro-turbine for smallscale Organic Rankine Cycle, Appl. Therm. Eng. 140(2018), 235–244.
  • [11] Weiss A.P.: Volumetric expanders versus turbine – which is the better choice for small ORC plants? In: Proc. 3rd Int. Sem. on ORC Power Systems, Brussels 2015.
  • [12] Klonowicz P., Hanausek P.: Optimum design of the axial ORC turbines with support of the Ansys CFX flow. In: Proc. 1st Int. Sem. on ORC Power Systems ORC 2011, Delft 2011.
  • [13] Ansys Academic Research CFX, Release 19.1.
  • [14] Klonowicz P., Heberle F., Preissinger M., Brüggemann D.: Significance of loss correaltions in performance prediction of small scale, highly loaded turbine stages working in Organic Rankine Cycles. Energy 72(2014), 322–330.
  • [15] Traupel W.: Thermische Turbomaschinen. Springer Singapore Pte., 2001.
  • [16] Ansys Academic BladeGen, Release 19.1.
  • [17] Kosowski K., Piwowarski M., Ste¸pień R., Włodarski W.: Design and investigations of the ethanol microturbine. Arch. Thermodyn. 39(2018), 2, 41–54.
  • [18] Wajs J., Mikielewicz D., Bajor M., Kneba Z.: Experimental investigation of domestic micro-CHP based on the gas boiler fitted with ORC module. Arch. Thermodyn. 37(2016), 3, 79–93.
Uwagi
EN
This work has been partially founded by by The National Centre for Research and Development and by The Smart Growth Operational Programme (European funds) within the project No. POIR.01.01.01-00-0414/17 and POIR.01.01.01-00-0512/16 carried out jointly with the Marani Company.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e70fdee-4237-4cf8-bdf4-131059ae34d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.