PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of the Vibration Response of a Rotary Dobby with Cam-Link and Cam-Slider Modulators

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the kinematic modeling and analysis of cam profiles of two different types of modulator: a cam-link and a cam-slider modulators. Kinematic and dynamic models of the two different modulators were established based on the motion curves of the main shaft of the rotary dobby. Simulations were carried out in Simulink to analyze the vibration responses under different rotary speeds, and vibration responses of the two mechanisms were compared. The results show that the cam-link modulator vibrates smoothly at speeds of <700 rpm, and theoretically, the speed should not exceed 1,400 rpm. The cam-slider modulator vibrates smoothly at speeds of <500 rpm, and theoretically, the speed should not exceed 1,000 rpm. The cam-slider modulator is more suitable for use at low speeds, whereas the cam-link modulator is more appropriate for high speeds. When both the cam-slider and cam-link modulators operate at high speeds, vibration distortion occurs, leading to bifurcation and chaotic vibration. Further knowledge of the complex behaviors associated with detachment of the follower from the cam can support the design of more sophisticated controllers aimed at avoiding follower detachment.
Rocznik
Strony
491--500
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • School of Mechanical Engineering, Tianjin Polytechnic University No. 399, Binshuixi Road, Xiqing District, Tianjin 300387, China
  • Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tianjin Polytechnic University No. 399, Binshuixi Road, Xiqing District, Tianjin 300387, China
autor
  • School of Mechanical Engineering, Tianjin Polytechnic University No. 399, Binshuixi Road, Xiqing District, Tianjin 300387, China
  • School of Mechanical Engineering, Tianjin Polytechnic University No. 399, Binshuixi Road, Xiqing District, Tianjin 300387, China
  • Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tianjin Polytechnic University No. 399, Binshuixi Road, Xiqing District, Tianjin 300387, China
autor
  • School of Mechanical Engineering, Tianjin University No. 92, Weijin Road, Nankai District, Tianjin 300072, China
Bibliografia
  • [1] Jin, G. G., Wei, X. Y., Wei, Z., Chang, B. Y., Zhang, X. Y. (2018). Dynamic analysis and optimization of rotary dobby lifting comprehensive mechanism. Journal of Textile Research, 39(9), 160–168.
  • [2] Yuan, R. W., Zhu, L. L., Lv, X. K., Yang, J. M. (2019). Modeling of rotary shifting motion characteristics of electronic dobby and influence thereof on shedding mechanisms driving. Journal of Textile Research, 40(12), 127–133.
  • [3] Eren, R., Özkan, G., Karahan, M. (2005). Comparison of heald frame motion generated by rotary dobby and crank & cam shedding motions. Fibres & Textiles in Eastern Europe, 13(4), 78–83.
  • [4] Abdulla, G., Can, O. (2018). Design of a new rotary dobby mechanism. Industria Textile, 69(6), 429–433.
  • [5] Bílek, M., Mrazek, J. (1998). Dynamic stress of heald shaft of weaving looms. Fibres and Textiles, 3, 131–134.
  • [6] Bílek, M., Skřivánek, J. (2013). Mathematical modeling of the system shedding motion - heald - warp. AUTEX Research Journal, 13(2), 42–46.
  • [7] Rothbart, H. A. (1956). Cams: Design, dynamics, and accuracy. John Wiley and Sons Ltd (New York), 150–200.
  • [8] Koster, M. P. (1974). Vibrations of cam mechanism. Palgrave (London), 120–150.
  • [9] Kim, H. R., Newcombe, W. R. (1982). The effect of cam profile errors and system flexibility on cam mechanism output. Mechanism and Machine Theory, 17, 57–72.
  • [10] Grewal, P. S., Newcombe, W. R. (1988). Dynamic performance of high-speed semi-rigid follower cam systems - Effects of cam profile errors. Mechanism and Machine Theory, 23, 121–133.
  • [11] Norton, R. L. (1988). Effect of manufacturing method on dynamic performance of cams - an experimental study. Part I - Eccentric cams. Mechanism and Machine Theory, 3, 191–199.
  • [12] Norton, R. L. (1988). Effect of manufacturing method on dynamic performance of cams - An experimental study. Part II - Double dwell cams. Mechanism and Machine Theory, 23, 201–208.
  • [13] Norton, R. L. (2002). Cam design and manufacturing handbook. Industrial Press (New York), 580–590.
  • [14] Wu, L. I., Chang, W. T. (2005). Analysis of mechanical errors in disc cam mechanisms. Proceedings of the Institution of Mechanical Engineers-Part C: Journal of Mechanical Engineering Science, 219(2), 209–224.
  • [15] Brogliato, B. (1999). Nonsmooth mechanics, dynamics and control. (2nd ed.) Springer Verlag (London), 448–475.
  • [16] di Bernardo, M., Budd, C., Champneys, A. R., Kowalczyk, P., Nordmark, A. B., et al. (2008). Bifurcations in nonsmooth dynamical systems. Society for Industrial and Applied Mathematics, 50(4), 629–701.
  • [17] Zhusubalyev, Z. T., Mosekilde, E. (2003). Bifurcations and Chaos in Piecewise - Smooth dynamical systems. World Scientific (Singapore), 230–285.
  • [18] Norton, R. L., Eovaldi, D., Westbrook, J., Stene, R. L. (1999). Effect of the valve-cam ramps on valve train dynamics. SAE International (USA).
  • [19] Teodorescu, M., Votsios, V., Rahnejat, H., Taraza, D. (2006). Jounce and impact in cam-tappet conjunction induced by the elastodynamics of valve train system. Meccanica, 41(2), 157–171.
  • [20] Kushwaha, M., Rahnejat, H., Jin, Z. M. (2001). Valve-train dynamics: A simplified tribo-elasto-multi-body analysis. Proceedings of the Institution of Mechanical Engineers -Part K: Journal of Multi-body Dynamics, 214, 1464–4193.
  • [21] Choi, T. D., Eslinger, O. J., Kelley, C. T., David, J. W., Etheridge, M. (2000). Optimization of automotive valve train components with implicit filtering. Optimization and Engineering, 1(1), 9–27.
  • [22] Gianluca, G., Domenico, M. (2010). On the direct control of follower vibrations in cam-follower mechanisms. Mechanism and Machine Theory, 45(1), 23–35.
  • [23] Zhang, C. (2008). Machinery dynamics. (2nd ed.) Higher Education Press (Beijing), 230–300.
  • [24] Qiu, H., Lin, C. J., Li, Z. Y., Ozaki, H. (2005). A universal optimal approach to cam curve design and its applications. Mechanism and Machine Theory, 40(6), 669–692.
  • [25] Mosier, R. G. (2000). Modern cam design. International Journal of Vehicle Design, 23(1/2), 38–55.
  • [26] Flocker, F. W. (2012). A versatile cam profile for controlling interface force in multiple-dwell cam-follower systems. Journal of Mechanical Design, 134(9), 094501-1-6.
  • [27] Chen, F. Y., Polvanich, N. (1975). Dynamics of high-speed cam-driven mechanisns - Part 1: Linear system models. Journal of Engineering for Industry, 97(3), 769–775.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e6b69c0-946c-45e6-aaeb-2c1abe269057
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.