PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Numerical, experimental and fuzzy logic applications for investigation of crack location and crack depth estimation in a free-free aluminum beam

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A beam structure under natural vibration in presence of crack undergoes a sharp change in its dynamic characteristics. In the present study the changes in two important modal vibration parameters like mode shapes and natural frequencies have been extensively studied for crack diagnosis in presence and absence of crack. Numerical and experimental investigations have been carried out using an aluminium Free-Free beam structure with and without crack. The crack presence is indicative of a decrease in local flexibility at crack location and a variation in mode shapes and natural frequencies are noticed. These variations in modal parameters have been used as the tools for crack diagnosis. In the present paper, efforts are made to analyse the presence of a crack using the application of fuzzy logic methodology. Here relative natural frequencies preferably first three are derived from experimental and theoretical investigations are utilised as input data to the fuzzy controller with Gaussian membership functions to obtain crack position and crack depth as output data. The resulted output data from fuzzy logic and the result from corresponding experimental and numerical analysis have been compared.The deviation of result of fuzzy logic from numerical and experimental results have been found to be within a limit of 3%.
Rocznik
Tom
Strony
art. no. 2018019
Opis fizyczny
Bibliogr. 51 poz., il. kolor., 1 fot., rys., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, Orissa Engineering College, Bhubaneswar, Odisha, India
autor
  • Department of Mechanical Engineering, National Institute of Technology, Rourkela, Odisha, India 769008
autor
  • Department of Mechanical Engineering, Institute of Technical Education and Research, Bhubaneswar, Odisha, India
Bibliografia
  • 1. M-HH. Shen, J. E. Taylor, An identification problem for vibrating cracked beams, Journal of Sound and Vibration, 150.3 (1991) 457 - 484.
  • 2. Y. Narkis, Identification of crack location in vibrating simply supported beams, Journal of sound and vibration, 172.4 (1994) 549 - 558.
  • 3. D. K. Agarwalla, D. R. Parhi, Effect of crack on modal parameters of a cantilever beam subjected to vibration, Procedia Engineering, 51 (2013) 665 - 669.
  • 4. P. C. Müller, J. Bajkowski, D. Söffker, Chaotic motions and fault detection in a cracked rotor, Nonlinear Dynamics, 5.2 (1994) 233 - 254.
  • 5. A. D. Dimarogonas, Vibration of cracked structures: a state of the art review, Engineering fracture mechanics, 55.5 (1996) 831 - 857.
  • 6. P. K. Jena, D. N. Thatoi, J. Nanda, D. R. K. Parhi, Effect of damage parameters on vibration signatures of a cantilever beam, Procedia Engineering, 38 (2012) 3318 - 3330.
  • 7. P. K. Jena, D. N. Thatoi, D. R. Parhi, Dynamically Self-Adaptive Fuzzy PSO Technique for Smart Diagnosis of Transverse Crack. Applied Artificial Intelligence, 29.3 (2015) 211 - 232.
  • 8. P. C. Jena, D. R. Parhi, G. Pohit, Theoretical, Numerical (FEM) and Experimental Analysis of composite cracked beams of different boundary conditions using vibration mode shape curvatures. Int. J. Eng. Technol, 6 (2014) 509 - 518.
  • 9. D. R. Parhi, H. C. Das, Structural damage detection by fuzzy-gaussian technique. International Journal of Mathematics and Mechanics, 4 (2008) 39 - 59.
  • 10. D. R. Parhi, H. C. Das, Smart crack detection of a beam using fuzzy logic controller. Int. J. Comput. Intell.: Theory Pract, 3.1 (2008) 9 - 21.
  • 11. D. R. Parhi, A. K. Behera, Dynamic deflection of a cracked beam with moving mass. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 211.1 (1997) 77 - 87.
  • 12. D. R. Parhi, A. K. Behera, R. K. Behera, Dynamic characteristics of cantilever beam with transverse crack. Aeronautical Society of India, Journal, 47.3 (1995) 31 - 144.
  • 13. T. C. Tsai, Y. Z. Wang, Vibration analysis and diagnosis of a cracked shaft, Journal of Sound and Vibration, 192.3 (1996) 607 - 620.
  • 14. G. D. Gounaris, C. A. Papadopoulos, Analytical and experimental crack identification of beam structures in air or in fluid, computers & structures, 65.5 (1997) 633 - 639.
  • 15. T. G. Chondros, A. D. Dimarogonas, Vibration of a Cracked Cantilever Beam, ASME, 1998.
  • 16. M. Kisa, J. Brandon, The effects of closure of cracks on the dynamics of a cracked cantilever beam, Journal of Sound and Vibration, 238.1 (2000) 1 - 18.
  • 17. F. Vestroni, D. Capecchi, Damage detection in beam structures based on frequency measurements, Journal of Engineering Mechanics, 126.7 (2000) 761 - 768.
  • 18. T. A. Duffey, S. W. Doebling, C. R. Farrar, W. E. Baker, W. H. Rhee, S. W. Doebling, Vibration-based damage identification in structures exhibiting axial and torsional response, Transactions of the ASME-L-Journal of Vibration and Acoustics, 123.1 (2001) 84 - 91.
  • 19. E. Viola, L. Federici, L. Nobile, Detection of crack location using cracked beam element method for structural analysis, Theoretical and Applied Fracture Mechanics, 36.1 (2001) 23 - 35.
  • 20. A. K. Dash, D. R. Parhi, Development of an inverse methodology for crack diagnosis using AI technique. International Journal of Computational Materials Science and Surface Engineering, 4.2 (2011) 143 - 167.
  • 21. X. F. Yang, A. S. J. Swamidas, R. Seshadri, Crack identification in vibrating beams using the energy method, Journal of sound and vibration, 244.2 (2001) 339 - 357.
  • 22. R. Ganguli, A fuzzy logic system for ground based structural health monitoring of a helicopter rotor using modal data, Journal of Intelligent Material Systems and Structures, 12.6 (2001) 397 - 407.
  • 23. R. K. Behera, A. Pandey, D. R. Parhi, Numerical and experimental verification of a method for prognosis of inclined edge crack in cantilever beam based on synthesis of mode shapes. Procedia Technology, 14 (2014) 67 - 74.
  • 24. E. S. Sazonov, P. Klinkhachorn, H. VS GangaRao, U. B. Halabe, Fuzzy logic expert system for automated damage detection from changes in strain energy mode shapes, Nondestructive Testing and Evaluation, 18.1 (2002) 1 - 20.
  • 25. P. M. Pawar, R. Ganguli, Genetic fuzzy system for damage detection in beams and helicopter rotor blades, Computer methods in applied mechanics and engineering, 192.16 (2003) 2031 - 2057.
  • 26. D. Skarlatos, K. Karakasis, A. Trochidis, Railway wheel fault diagnosis using a fuzzy-logic method, Applied Acoustics, 65.10 (2004) 951 - 966.
  • 27. M. de, J. Luis, L. F. Blázquez, Fuzzy logic-based decision-making for fault diagnosis in a DC motor, Engineering Applications of Artificial Intelligence, 18.4 (2005) 423 - 450.
  • 28. Y. M. Kim, C. K. Kim, G. H. Hong, Fuzzy set based crack diagnosis system for reinforced concrete structures, Computers & structures, 85.23 (2007) 1828 - 1844.
  • 29. Y. M. Kim, C. K. Kim, G. H. Hong, Fuzzy set based crack diagnosis system for reinforced concrete structures, Computers & structures, 85.23 (2007) 1828 - 1844.
  • 30. H. C. Das, D. R. Parhi, Detection of the crack in cantilever structures using fuzzy gaussian inference technique. AIAA Journal, 47.1 (2009) 105 - 115.
  • 31. H. C. Das, D. R. Parhi, Application of neural network for fault diagnosis of cracked cantilever beam. In Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on, (2009, December) 1303 - 1308, IEEE.
  • 32. J. Nanda, D. R. Parhi, Theoretical analysis of the shaft. Advances in Fuzzy Systems, 8 (2013).
  • 33. D. N. Thatoi, H. C. Das, D. R. Parhi, Review of techniques for fault diagnosis in damaged structure and engineering system. Advances in Mechanical Engineering, 4 (2012) 327569.
  • 34. S. Sasmal, K. Ramanjaneyulu, Condition evaluation of existing reinforced concrete bridges using fuzzy based analytic hierarchy approach, Expert Systems with Applications, 35.3 (2008) 1430 - 1443.
  • 35. N. Saravanan, S. Cholairajan, K. I. Ramachandran, Vibration-based fault diagnosis of spur bevel gear box using fuzzy technique, Expert systems with applications, 36.2 (2009) 3119 - 3135.
  • 36. M. Chandrashekhar, R. Ganguli, Uncertainty handling in structural damage detection using fuzzy logic and probabilistic simulation, Mechanical Systems and Signal Processing, 23.2 (2009) 384 - 404.
  • 37. M. Chandrashekhar, R. Ganguli, Damage assessment of structures with uncertainty by using mode-shape curvatures and fuzzy logic, Journal of Sound and Vibration, 326.3 (2009) 939 - 957.
  • 38. P. Beena, R. Ganguli, Structural damage detection using fuzzy cognitive maps and Hebbian learning, Applied Soft Computing, 11.1 (2011) 1014 - 1020.
  • 39. M. K. Singh, D. R. Parhi, J. K. Pothal, ANFIS approach for navigation of mobile robots. In Advances in Recent Technologies in Communication and Computing, 2009. ARTCom'09. International Conference on, (2009, October) 727 - 731, IEEE.
  • 40. M. K. Singh, D. R. Parhi, S. Bhowmik, S. K. Kashyap, Intelligent controller for mobile robot: Fuzzy logic approach. In The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG) (2008, October) 1755 - 1762.
  • 41. D. R. Parhi, M. K. Singh, Navigational path analysis of mobile robots using an adaptive neuro-fuzzy inference system controller in a dynamic environment. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 224.6 (2010) 1369 - 1381.
  • 42. D. R. Parhi, B. B. V. L. Deepak, D. Nayak, A. Amrit, Forward and Inverse Kinematic Models for an Articulated Robotic Manipulator. International Journal of Artificial Intelligence and Computational Research, 4.2 (2012) 103 - 109.
  • 43. B. B. V. L. Deepak, D. R. Parhi, A. K. Jha, Kinematic Model of Wheeled Mobile Robots. Int. J. on Recent Trends in Engineering & Technology, 5.4 (2011).
  • 44. B. B. V. L. Deepak, D. R. Parhi, S. Kundu, Innate immune based path planner of an autonomous mobile robot. Procedia Engineering, 38 (2012) 2663 - 2671.
  • 45. B. B. V. L. Deepak, D. R. Parhi, Control of an automated mobile manipulator using artificial immune system. Journal of Experimental & Theoretical Artificial Intelligence, 28.1-2 (2016) 417 - 439.
  • 46. A. Pandey, R. K. Sonkar, K. K. Pandey, D. R. Parhi, Path planning navigation of mobile robot with obstacles avoidance using fuzzy logic controller. In Intelligent Systems and Control (ISCO), 2014 IEEE 8th International Conference on, (2014, January) 39 - 41. IEEE.
  • 47. A. Pandey, S. Kumar, K. K. Pandey, D. R. Parhi, Mobile robot navigation in unknown static environments using ANFIS controller. Perspectives in Science, 8 (2016) 421 - 423.
  • 48. P. K. Mohanty, D. R. Parhi, Optimal path planning for a mobile robot using cuckoo search algorithm. Journal of Experimental & Theoretical Artificial Intelligence, 28.1-2 (2016) 35 - 52.
  • 49. P. K. Mohanty, D. R. Parhi, Cuckoo search algorithm for the mobile robot navigation. In International Conference on Swarm, Evolutionary, and Memetic Computing, (2013, December) 527 - 536. Springer, Cham.
  • 50. P. K. Mohanty, D. R. Parhi, Navigation of autonomous mobile robot using adaptive neuro-fuzzy controller. In Intelligent Computing, Networking, and Informatics, (2014) 521 - 530. Springer, New Delhi.
  • 51. P. K. Mohanty, D. R. Parhi, Path generation and obstacle avoidance of an autonomous mobile robot using intelligent hybrid controller. In International Conference on Swarm, Evolutionary, and Memetic Computing, (2012, December) 240 - 247. Springer, Berlin, Heidelberg.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e6aba59-a83f-4d8d-baab-141566690f39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.