PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biomass-biogas recycling technique studies of municipal food waste disposal: a reviw

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badania nad technologiami odzysku biogazu z biomasy z żywnościowych odpadów komunalnych: przegląd
Języki publikacji
EN
Abstrakty
PL
Źródła energii znalazły się w centrum zainteresowania pod względem prawnym, etycznym, społecznym i gospodarczym z powodu rosnących problemów środowiska. Powszechnie wiadome, że nieodnawialne źródła energii są w coraz większym stopniu zastępowane innymi, które są odnawialne i mniej zanieczyszczające, z wykorzystaniem technologii mających na celu zrównoważony rozwój. Utylizacja stałych odpadów żywnościowych jest wciąż poważnym problemem dla wielu społeczności. Technologia beztlenowej fermentacji jest możliwa do zastosowania przy przetwarzaniu organicznych odpadów stałych i łączy odzysku materiału oraz produkcję energii. Recykling odpadów spożywczych w procesie beztlenowa fermentacja na biogaz, zawiesinę biogazu oraz nawóz organiczny jest podstawowym zadaniem utylizacji bioodpadów komunalnych. Bazując na sortowaniu odpadów spożywczych, technologia ta może zlikwidować zanieczyszczenia z odpadów spożywczych, w odniesieniu do ich źródeł. Z jednej strony złagodzić presję na środowisko pochodzące z spożywczych odpadów komunalnych oraz uniknąć wtórnego zanieczyszczenia, osiągnąć zasadę „3R” (Reduce, Reuse, Recycle) w gospodarce odpadami jeszcze bardziej. Zasada ta wprowadza zasady technik, przewagę technologiczną oraz postęp w dziedzinie badań nad beztlenową fermentacją. Fermentacja beztlenowa dzieli się na mokrą i suchą. W porównaniu z oczywistymi zaletami fermentacji na mokro, jest jeszcze wiele braków w procesie fermentacji suchej. Ostatecznie stwierdzono, że technologia suchej fermentacji do produkcji metanu zmieniła tradycyjne podejście do fermentacji. W pewnym sensie, usuwanie i recykling odpadów spożywczych jest w przybliżeniu podobny do zgazowania komunalnych odpadów spożywczych, co może zamienić odpady w majątek, który ludzkość może wykorzystać do zarządzania w metropoliach. I zdecydowanie rekomenduje się fermentację typu etanolowego jako najbardziej obiecujący typ acydyfikacyjny.
Rocznik
Tom
Strony
21--55
Opis fizyczny
Bibliogr. 83 poz., rys.
Twórcy
autor
  • Tsinghua University, Beijing, China
autor
  • Tsinghua University, Beijing, China
  • Zhejiang Univerity, Hangzhou, China
autor
  • Zhejiang Univerity, Hangzhou, China
autor
  • Zhejiang Univerity, Hangzhou, China
autor
  • Tsinghua University, Beijing, China
Bibliografia
  • 1. Cuellar A.D., Webber M.E.: Wasted Food, Wasted Energy: Embedded Energy in Food Waste in the United States. Environmental Science & Technology 44, 6464–6469 (2010).
  • 2. Levis J.W., Barlaz M.A., Themelis N.J.: Assessment of the State of Food Waste Treatment in the United States and Canada. Waste Management 30, 1486–1494 (2010).
  • 3. Pehlivan E., Taner F.: The Investigation of Convertion to Products Like Fossil Fuels and Biogas and Substance Soluble in Water of Some Biomass Wastes. SGEM 2009: 9th International Multidisciplinary Scientific Geoconference,vol. II, Conference Proceeding: Modern Management of Mine Producing, Geology and Environmental Protection, 413–420 (2009).
  • 4. Stępniewski W., Pawłowska M.: A Possibility to Reduce Methane Emission from Landfills by Its Oxidation in the Soil Cover. Chemistry from the Protection of the Environment 2, Environmental Science Research, Vol. 51, Plenum Press, New York, 75–92 (1996).
  • 5. Chen Y., Xu Y., Yin Y.: Impacts of land use change scenarios on stormrunoff generation in Xitiaoxi basin, China. Quaternary International 208, 121–128 (2009).
  • 6. Summers J.D., Macleod G.K., Warner W.C.: Chemical composition of culinary wastes and their potential as a feed for ruminants. Animal Feed Science and Technology 5, 205–214 (1980).
  • 7. Tuarira A.M.: Chapter 3 – Food, Field Guide to Appropriate Technology. 277–480, (2003).
  • 8. Pawłowska M., Stępniewski W.: An influence of methane concentration on the methanotrophic activity of a model landfill cover. Ecological Engineering 26, Elsevier, 392–395 (2006).
  • 9. Pawłowska M., Kurzak J., Orłowska R.: Evaluation of possibility of green waste composting – Lublin case study. in: Pawłowski L., Dudzińska M., Pawłowski A. (eds), Environmental Engineering, Taylor & Francis Group, New York – Singapore, 323–326 (2007).
  • 10. Komilis D., Evangelou A., Giannakis G.: Revisiting the elemental composition and the calorific value of the organic fraction of municipal solid wastes. Waste Management, 32, 372–381 (2012).
  • 11. Pawłowska M., Czerwiński J., Stępniewski W.: Variability of the Nonmethane Volatile Organic Compounds (NMVOC) Composition in Biogas from Sorted and Unsorted Landfill Material. Archives Environ. Prot. 34, 3, 287–298 (2008).
  • 12. Ki-Chang N., Cheorun J., Mooha L.: Meat products and consumption culture in the East. Meat Science, 86, 95–102 (2010).
  • 13. Hao H., Wang H., Ouyang M.: Fuel conservation and GHG (Greenhouse gas) emissions mitigation scenarios for China’s passenger vehicle fleet. Energy 36, 6520–6528 (2011).
  • 14. Seung G.S., Gyuseong H., Juntaek L.: A comprehensive microbial insight into two-stage anaerobic digestion of food waste-recycling wastewater. Water Research, 44, 4838–4849 (2010).
  • 15. Pawłowska M., Czerwiński J., Stępniewski W.: Variability of the Nonmethane Volatile Organic Compounds (NMVOC) Composition in Biogas from Sorted and Unsorted Landfill Material Archives Environ. Prot. 34, 3, 287–298 (2008).
  • 16. Montusiewicz A., Lebiocka M., Pawłowska M.: Characterization of the biomethanization process in selected waste mixtures. Archives of Environmental Protection, 34, 3, 49–61 (2008).
  • 17. Heller M.C., Keoleian G.A.: Assessing the sustainability of the US food system: a life cycleperspective. Agricultural Systems, 76, 1007–1041 (2003).
  • 18. Stępniewski W., Pawłowska M.: Biofilters and biocovers of landifils – Effect of biophysical factors on their efficiency. In: Proceedings of the National Seminar on Solid Waste Management – WasteSafe 2008, Alamgir M., Hossain Q.S., Rafizul I.M., Mohiuddin K.M. &Bari Q.H., Kbulna (eds),Bangladesz, 289–297 (2008).
  • 19. Staszewska E., Pawłowska.: Methanotrophs and their role in mitigating methane emissions from landfill sites. In: Environmental Engineering, (eds. Pawłowski L., Dudzińska M.R., Pawłowski A.), CRC-Press Taylor&Francis Group, Boca Raton, 351–364 (2010).
  • 20. Tang X., Gu Y.: Research on Development of Green Catering in China in the Context of Low Carbon Economy. Energy Procedia, 11, 4005–4012 (2011).
  • 21. Jiuping X., Zongmin L.: A review on Ecological Engineering based Engineering Management. Omega, 40, 368–378 (2012).
  • 22. Staszewska E., Pawlowska M.: Methanotrophs and their role in mitigating methane emissions from landfill sites. In: Environmental Engineering, (eds. Pawłowski L., Dudzińska M.R., Pawłowski A.), CRC-Press Taylor&Francis Group, Boca Raton, 351–364 (2010).
  • 23. Appels L., Baeyens J., Degrève J.: Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34, 755–781 (2008).
  • 24. Bernstad A., la Cour Jansen J.: A life cycle approach to the management of household food waste – A Swedish full-scale case study. Waste Management, 31, 1879–1896 (2011).
  • 25. Arnaiz C., Gutierrez J.C., Lebrato J.: Biomass stabilization in the anaerobic digestion of wastewater sludges. Bioresource Technology, 97, 1179–1184 (2006).
  • 26. Lebiocka M., Montusiewicz A., Pawłowska M.: Variability of Heavy Metal Concentrations in the Co-Digestion. Proceedings of EURASIA Waste Symposium, Istanbul, 14–17 November 2011.
  • 27. Kosseva M.R.: Management and Processing of Food Wastes, Comprehensive Biotechnology. (Second Edition), 557–593 (2011).
  • 28. Sarahi L.G., Kamlesh J., Whitman W.B.: Transition of microbial communities during the adaption to anaerobic digestion of carrot waste. Bioresource Technology, 102, 7249–7256 (2011).
  • 29. Rincón B., Borja R., Martín M.A.: Kinetic study of the methanogenic step of a two-stage anaerobic digestion process treating olive mill solid residue. Chemical Engineering Journal, 160, 215–219 (2010).
  • 30. Becker P.M., van Wikselaar P.G.: Effects of plant antioxidants and natural vicinal diketones on methane production, studied in vitro with rumen fluid and a polylactate as maintenance substrate. Animal Feed Science and Technology, 170, 201–208 (2011).
  • 31. Cavinato C., Bolzonella D., Fatone F.: Optimization of two-phase thermophilic anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation. Bioresource Technology, 102, 8605–8611 (2011).
  • 32. Cao Y., Pawłowski A.: Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment. Renewable and Sustainable Energy Reviews, 16, 1657–1665 (2012).
  • 33. Jiunn-Jyi L., Yu-You L., Tatsuya N.: Influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Research, 31, 1518–1524 (1997).
  • 34. Zhang B., Shi H., Zhang L.: The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion. Acta Scientiae, 25, 665–669 (2005).
  • 35. Bouallagui H., Haouari O., Touhami Y.: Effect of temperature on the performance of an anaerobic tubular reactor treating fruit and vegetable waste.Process Biochem., 39, 2143–2148 (2004).
  • 36. Xiao B., Li B., Li B.: Organic solid waste anaerobic digestion technology research progress. Pioneering with Science & Technology Monthly, 12, 107–109 (2004).
  • 37. Komemoto K., Lim Y.G., Nagao N.: Effect of temperature on VFA’s and biogas production in anaerobic solubilization of food waste. Waste Management, 29, 2950–2955 (2009)
  • 38. Gao L., Deng G., Zhao H.: Effect of C/N on Gas Production of Biogas. Journal of Anhui Agricultural Sciences, 37, 6879–6880 (2009).
  • 39. Lin C.Y., Lay C.H.: Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Int. J Hydrogen Energy, 29, 41–45 (2004).
  • 40. Whittmann C., Zeng A.P., Deekwer W.D.: Growth inhibition by ammonia and use of pH-controlled feedings strategy for the effective cultivation of Mycobacterium chlorophenolicum. Applied Microbiology and Biotechnology, 44, 519–525 (1995).
  • 41. Jiang J., Wang Y., Sui J.: Variations of the ammonia concentration of high solid anaerobic digestion technology for organic waste. China Environmental Science, 27, 721–726 (2007).
  • 42. Prkin G.E.: The effect of ammonia on methane fermentation process. Water Pollut. Control Fed, 61, 55–59 (1989).
  • 43. Ye C., Jay J.C., Creamer K.S.: Inhibition of anaerobic digestion Process: A review. Bioresource Technology, 99, 4044–4064 (2008).
  • 44. Zheng F., Zheng S.: Basicity on anaerobic system influence analysis. China High Technology Enterprises, 10, 65 (2008).
  • 45. Wang X., Wang D., Li J.: Status quo of kitchen waste anaerobic digestion. China Biogas, 24, 36 (2006).
  • 46. Stabnikova O., Liu X.Y., Wang J.Y.: Digestion of frozen/thawed food waste in the hybrid anaerobic solid-liquid system. Waste Management, 28, 1654–1659 (2008).
  • 47. Pan Y., Zhang L., Guo J.: The study on biological degrading of crops straw. Renewable Energy, 3, 33–35 (2005).
  • 48. Rincon B., Borja R., Gonzalez J.M.: Influence of organic loading rate and hydraulic retention time on the performance, stability and microbial communities of on-stage anaerobic digestion of two-phase olive mill solid residue. Biochemical Engineering Journal, 40, 253–261 (2008).
  • 49. Zhang A., Chen H., Li Z.: The present situation and progress of study of solid-state anaerobic digestion of organic solid wastes. Research of Environmental Sciences, 15, 52–54 (2002).
  • 50. Nallathambi G.: Effect of inoculum/substrate ration and Pretreatments on methane yield from Parthenium. Biomass and Bioenergy, 8, 39–44 (1995).
  • 51. Forster-Carneiro T., Perez M., Romero L.I.: Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste. Bioresource Technology, 99 6994–7002 (2008).
  • 52. Ma L., Wang D., Xie X.: Influence of inoculum on thermophilic anaerobic digestion of food waste. Transactions of the Chinese Society of Agricultural Engineering, 24, 178–182 (2008).
  • 53. Wang X., Wang D., Zhang Y.: Effects of recirculation and organic loading on anaerobic digestion of kitchen wastes. Environmental Pollution & Control, 28, 748–752 (2006).
  • 54. Stabnikova O., Xue-Yan L., Jing-Yuan W.: Anaerobic digestion of food waste in a hybrid anaerobic solid-liquid system with leachate recirculation in an acidogenic reactor. Biochemical Engineering Journal, 42, 198–201 (2008).
  • 55. Sponza D.T.: Impact of leachate recirculation and recirculation volume on stabilization of municipal solid wastes in simulated anaerobic bioreactors. Process Biochemistry, 39, 2157–2165 (2004).
  • 56. Chen Q., Liu H., Hu Y.: A review on the development of anaerobic digestion of organic solid wastes. China Biogas, 19, 328 (2001).
  • 57. Cho J., Park S.: Biochemical methane potential and solid state anaerobic digestion of Korean food wastes. Bioresource Technology, 52, 245–253 (1995).
  • 58. Neves L., Goncalo E., Oliveira R.: Influence of composition on the biomethanation potential of restaurant waste at mesophilic temperatures. Waste Management, 28, 965–972 (2008).
  • 59. Parawira W., Murto M., Zvauya R.: Anaerobic batch digestion of solid potato waste alone and in combination with sugar beet leaves. Renewable Energy, 29, 1811–1823 (2004).
  • 60. Sui J., Jiang J., Wu S.: Start-up Research of Single Phase High Solid Anaerobic Digestion Technology for Organic Waste. Environmental Science, 28, 684–688 (2004).
  • 61. Li J., Qian X., Zhao Y.: Feasibility Study on Anaerobic Digestive Disposal of Waste Food. Shanghai Environmental Sciences, 22, 646–648 (2003).
  • 62. Liu H., Wang J., Zhao D.: Study of Anaerobic Digestion Treatment Technology for Food Waste and Swill. Energy Technology, 26, 150–154 (2005).
  • 63. Sang H.K., Sun K.H., Hang S.S.: Feasibility of biohydrogen production by anaerobic codigestion of foodwaste and sewage sludge. International Journal of Hydrogen Energy, 29, 1607–1616 (2004).
  • 64. Li R., Liu Y., Li X.: Biogasification performance of anaerobic co-digestion of kitchen residues and cattle manure. Renewable Energy Resources, 26, 64–68 (2008).
  • 65. Li B., Bingnan L.V., Ren N.: The Influence Factors of Ethanol Type Fermentation in AcidogenicPh. Journal of Harbin University of Civil Engineering and Architecture, 29, 44–48 (1996).
  • 66. Zhang B., Zeng G., Zhang P.: A study of thermophilic digestion of municipal solid waste. Environmental Pollution & Control, 28, 87–89 (2006).
  • 67. Ghosh S., Taylor D.C.: Kraft-mill biosolids treatment by conventional and biphasic fermentation. Water Science and Technology, 40, 169–177 (1999).
  • 68. Liu M., Ren N., Ding J.: Anaerobic Fermentation Biohydrogen Production from Molasses, Starch and Milk Wastewaters. Environmental Science, 25, 65–69 (2004).
  • 69. Miron Y., Zeeman G., van Lier J.B.: The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems. Water Research, 34, 1705– 1713 (2000).
  • 70. Masse L, Kennedy K.J., Chou S.: Testing of alkaline and enzymatic hydrolysis pretreatments for fatparticles in slaughterhouse wastewater. Bioresource Technology, 77, 145–155 (2001).
  • 71. Chen Y., Jiang S., Yuan H., Zhou Q., Gu G.: Hydrolysis and acidification of waste activated sludge at different pHs. Water Research, 41, 683–689 (2007).
  • 72. Wang X., Wang D., Xu F.: Comparative study of biogas production from kitchen wastes with different anaerobic digestion technologies. Energy Engineering, 5, 27–31 (2005).
  • 73. Jung K.K., Gui H.H., Baek R.O.: Volumetric scale-up of a three stage fermentation system for food waste treatment. Bioresource Technology, 99, 4394–4399 (2008).
  • 74. Sun-Kee H., Hang-Sik S.: Performance of an innovative two-stage process converting food waste to hydrogen and methane. Air and Waste Management Association, 54 242–249 (2004).
  • 75. Sarada R., Joseph R.: A comparative study of single and two stage proeesses for methane production from tomato processing waste. Process Biochemistry, 31, 337–340 (1996).
  • 76. Mtz-Viturtia A., Mata-Alvarez J., Cecchi F.: Two-phase continuous anaerobic digestion of fruit and vegetable wastes. Resources, Conservation and Recycling, 13, 257–267 (1995).
  • 77. Xu J., Zhang B., Cai W.: Two-Stage Anaerobic Digestion of Kitchen Garbage in SBR Reactors. Research of Environmental Sciences, 17, 44–47 (2004).
  • 78. Scarlat N., Dallemand J.F., Skjelhaugen O.J.: An overview of the biomass resource potential of Norway for bioenergy use. Renewable and Sustainable Energy Reviews, 15, 3388–3398 (2011).
  • 79. Bazmi A.A., Zahedi G., Hashim H.: Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation. Renewable and Sustainable Energy Reviews, 15, 574–583 (2011).
  • 80. Li X., Zhao L., Han J.: The new direction of agricultural residues utilization in China: biogas dry fermentation technology. China Biogas, 24, 23–27 (2006).
  • 81. Wu M., Sun K., Li R.: High-temperature dry anaerobic-digestion process for treating municipal solid wastes. Energy Research and Information, 21, 187–191 (2005).
  • 82. McGrath P., Nilon C.H., Pouyat R.V.: Urban ecological systems: Scientific foundations and a decade of progress. Journal of Environmental Management, Volume 92, 331–362 (2011).
  • 83. Łebkowska M., Załęska-Radziwiłł M.: Usable products from sewage and solid waste. Archives of Environmental Protection. Vol 37. No 3. 15–19 (2011).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e67b852-26be-4772-a80c-ee387d365451
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.