PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Minimizing the emission of material waste in the production process of batteries

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Contemporary societies are strongly dependent existentially and economically on the supply of electricity, both in terms of supplying devices from the power grid, as well as the use of energy storage and constant voltage sources. Electrochemical batteries are commonly used as static energy storage. According to forecasts provided by the Environmental Protection Agency at the global and EU level, in 2025 lead-acid technologies will continue to dominate, with the simultaneous expansion of the lithium-ion battery market. The production, use and handling of used batteries are associated with a number of environmental and social challenges. The way batteries influence the environment is becoming more and more significant, not only in the phase of their use but also in the production phase. The article presents how to effectively reduce the environmental impact of the battery production process by stabilizing it. In the presented example, the proposed changes in the battery assembly process facilitated the minimization of material losses from 0.33% to 0.05%, contributing to the reduction of the negative impact on the environment.
Rocznik
Strony
art. no. e144049
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Poznan University of Technology, Plac Marii Skłodowskiej-Curie 5, 60-965 Poznań, Poland
autor
  • Poznan University of Technology, Plac Marii Skłodowskiej-Curie 5, 60-965 Poznań, Poland
  • Poznan University of Technology, Plac Marii Skłodowskiej-Curie 5, 60-965 Poznań, Poland
Bibliografia
  • [1] W. D’Anna and G. Cascini, “Adding quality of life to design for Eco-Efficiency,” J. Clean Prod., vol. 112, no. 1, pp. 3211–3221, 2016, doi: 10.1016/j.jclepro.2015.09.109.
  • [2] S. Hankammer and R. Kleer, “Degrowth and collaborative value creation: Reflections on concepts and technologies,” J. Clean Prod., vol. 197, pp. 1711–1718, 2018, doi: 10.1016/j.jclepro.2017.03.046.
  • [3] A. Borucka, “Logistic regression in modeling and assessment of transport services,” Open Eng., vol. 10, no. 1, pp. 26–34, 2020, doi: 10.1515/eng-2020-0029.
  • [4] D. Meadows and J. Randers. Beyond the Limits. The 30-year update. Vermont: Chelsea Green Publishing, 2013.
  • [5] A. Nowaczek and J. Kulczycka, “Overview of funding sources and technologies for the recovery of raw materials from spent batteries and rechargeable batteries in Poland,” Miner. Resour. Manag., vol. 36, no. 2, pp. 153–172, 2020, doi: 10.24425/gsm.2020.132564.
  • [6] S. Shah, “Zero waste can be achieved through 5R principles of waste management,” in Proc. 5th World Convention on Recycling and Waste Management, p. 46, 2017, doi: 10.4172/2252-5211-C1-009.
  • [7] M. Hallmann, C. Wenge, P. Komarnicki, and S. Balischewski, “Methods for lithium-based battery energy storage SOC estimation. Part I: Overview,” Arch. Electr. Eng., vol. 71, no. 1, pp. 139–151, 2022, doi: 10.24425/aee.2022.140202.
  • [8] M. Sołtysik, C. Ingaro, and M. Wojnarowska, “Characteristics of Sustainable Product,” in Sustainable Products in the Circular Economy Impact on Business and Society, Publisher: Routledge, 2022, doi: 10.4324/9781003179788-1.
  • [9] M. Jasiulewicz-Kaczmarek, “Identification of maintenance factors influencing the development of sustainable production processes – a pilot study,” in IOP Conference Series: Materials Science and Engineering, vol. 400, no. 6, p. 062014, 2018, doi: 10.1088/1757-899X/400/6/062014.
  • [10] H. Gholami, F. Abu, J.K.Y. Lee, S.S. Karganroudi, and S. Sharif, “Sustainable Manufacturing 4.0 – Pathways and Practices,” Sustainability, vol. 13, p. 13956, 2021, doi: 10.3390/su132413956.
  • [11] I. Rey, M. Iturrondobeitia, O. Akizu-Gardoki, R. Minguez, and E. Lizundia, “Environmental Impact Assessment of Na3V2(PO4)3 Cathode Production for Sodium-Ion Batteries,” Advanced Energy and Sustainability Research, vol. 3, no. 8, 2022, doi: 10. 1002/aesr.202200049.
  • [12] G. Plante, The Storage of Electrical Energy (1859). Whitefish: Kessinger Publishing, 2007.
  • [13] J.M.Rödger et al., “Combining life cycle assessment and manufacturing system simulation: Evaluating dynamic impacts from renewable energy supply on product-specific environmental footprints,” Int. J. Precis Eng Manuf-Green Technol., vol. 8, pp. 1007–1026, 2021, doi: 10.1007/s40684-020-00229-z.
  • [14] I. Rojek, E. Dostatni, and A. Hamrol, “Ecodesign of technological processes with the use of decision trees method”, in Proc. of International Joint Conference Soco’17–Cisis’17–Iceute’17, 2018, pp. 318–327, doi: 10.1007/978-3-319-67180-2_31.
  • [15] J. Liu et al., “Battery technologies for grid-level large-scale electrical energy storage,” Trans. Tianjin Univ., vol. 26, no. 3, 2020, doi: 10.1007/s12209-019-00231-w.
  • [16] A. Kujawińska, A. Hamrol, and K. Brzozowski, “Waste minimization in the battery assembly process – case study,” in Advances in Manufacturing III. MANUFACTURING 2022. Lecture Notes in Mechanical Engineering. pp. 214–224, 2022, doi: 10.1007/978-3-031-00218-2_18.
  • [17] T. Gao, L. Hu, and M. Wei, “Life Cycle Assessment (LCA)- based study of the lead-acid battery industry,” in Proc. of IOP Conference Series Earth and Environmental Science, vol. 651, no 4, p. 042017, 2021, doi: 10.1088/1755-1315/651/4/042017.
  • [18] H. Dai, B. Jiang, X.-S. Hu, X. Lin, X. Wei, and M. Pecht, “Advance battery management strategies for sustainable energy future: Multilayer design concept and research trends,” Renew. Sust. Energ. Rev., vol. 138, p. 110480, 2021, doi: 10.1016/j.rser.2020.110480.
  • [19] S. Sala, A. Beylot, S. Corrado, E. Crenna, E. Sanyé-Mengual, and M. Secchi, “Indicators and assessment of the environmental impact of EU consumption Consumption and Consumer Footprints for assessing and monitoring EU policies with Life Cycle Assessment,” Report number: EUR 29648 EN, European Commission, 2019, doi: 10.2760/403263.
  • [20] C. Su, H. Chen, and Z. Wen, “Prediction of remaining useful life for lithium-ion battery with multiple health indicators,” Eksploat. Niezawodn. – Maint. Reliab., vol. 23, no. 1, pp. 176–183, 2021, doi: 10.17531/ein.2021.1.18.
  • [21] D. Burzyński, “Useful energy prediction model of a Lithium-ion cell operating on various duty cycles,” Eksploat. Niezawodn. – Maint. Reliab., vol. 24, no. 2, pp. 317–329, 2022, doi: 10.17531/ein.2022.2.13.
  • [22] Failure Mode and Effects Analysis – FMEA Handbook. Michigan, Automotive Industry Action Group, 2019.
  • [23] M. Sartor and G. Orzes. Quality Management: Tools, Methods and Standards. Bingley, UK: Emerald Group Publishing, 2019.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e642599-663e-4343-9cff-986a1b4591c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.