PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Constitutive modelling of root-reinforced granular soils – preliminary studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A novel solution for the problem of modelling of soil reinforced with vegetation roots. An extension of the Nor–Sand model and its application to granular saturated or dry, soil–root composites. Model implementation in MATLAB: numerical simulations of drained triaxial compression tests, investigation of the sensitivity of the solution to different values of model parameters. Capturing the most important features of soil–root composites. Accounting for the progressive activation of the root’s strength. Indication of the ability of further model application to large-scale problems, such as slope or dune stability.
Rocznik
Strony
103--113
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Instytut Budownictwa Wodnego PAN, 80-328 Gdańsk, ul. Kościerska 7, Poland
autor
  • University of California, Berkeley CA Department of Civil and Environmental Engineering, USA
Bibliografia
  • Been, K. & Jefferies, M.G. (1985). A state parameter for sands. Géotechnique, 35(2), 99-112. doi: 10.1680/geot.1985.35.2.99
  • Cazzuffi, D., Cardile, G. & Gioffrè, D. (2014). Geosynthetic Engineering and Vegetation Growth in Soil Reinforcement Applications. Transportation Infrastructure Geotechnology, 1(3-4), 262-300. doi: 10.1007/s40515-014-0016-1
  • Dupuy, L., Gregory, P.J. & Bengough, A.G. (2010). Root growth models: Towards a new generation of continuous approaches. Journal of Experimental Botany, 61(8), 2131-2143. doi: 10.1093/jxb/erp389
  • Fern, J.E. (2016). Constitutive Modelling of Unsaturated Sand and its Application to Large Deformation Modelling (PhD thesis). Cambridge: Univeristy of Cambridge.
  • Fern, J.E., Robert, D.J. & Soga, K. (2016). Modelling the stress-dilatancy relationship of unsaturated silica sand in triaxial compression tests. Journal of Geotechnical and Geoenvironmental Engineering 142(11). DOI: 10.1061/(ASCE)GT.1943-5606.0001546
  • Ghestem, M., Veylon, G., Bernard, A., Vanel, Q. & Stokes, A. (2013). Influence of plant root system morphology and architectural traits on soil shear resistance. Plant and Soil, 377(1-2), 43-61. doi:10.1007/s11104-012-1572-1
  • Jefferies, M.G. (1993). Nor-Sand: A simple critical state model for sand. Géotechnique, 43(1), 91-103.
  • Nova, R. (1982). A constitutive model for soil under monotonic and cyclic loading. In Soil Mechanics – transient and cyclic loading (pp. 343-373).
  • Chichester: Wiley. Operstein, V. & Frydman, S. (2000). The influence of vegetation on soil strength. Ground Improvement, 4, 81-89.
  • Osman, N. & Barakbah, S. (2011). The effect of plant succession on slope stability. Ecological Engineering, 37(2), 139-147. doi: 10.1016/j.ecoleng.2010.08.002
  • Pollen, N. & Simon, A. (2005). A New Approach to Modeling the Mechanical Effects of Riparian Vegetation on Streambank Stability: A Fiber-Bundle Model. In Impacts of Global Climate Change, World Water and Environmental Resources Congress 2005, Anchorage, Alaska, United States. doi: 10.1061/40792(173)592
  • Preti, F. & Giadrossich, F. (2009). Root reinforcement and slope bioengineering stabilization by Spanish Broom (Spartium junceum L.). Hydrology and Earth System Sciences Discussions, 6(3), 3993-4033. doi: 10.5194/hessd-6-3993-2009
  • Rees, S.W. & Ali, N. (2012). Tree induced soil suction and slope stability. Geomechanics and Geoengineering, 7(2), 103-113. doi: 10.1080/17486025.2011.631039
  • Roscoe, K.H. & Schofield, A.N. (1963). Mechanical behaviour of an idealised “wet clay”. In Proceedings of European Conference on Soil Mechanics, 1, 47-54.
  • Roscoe, K.H., Schofield, A.N. & Wroth, C.P. (1958). On the yielding of soils. Géotechnique, 8, 22-53.
  • Schwarz, M., Lehmann, P. & Or, D. (2010). Quantifying lateral root reinforcement in steep slopes – from a bundle of roots to tree stands. Earth Surface Processes and Landforms, 35(3), 354-367. doi: 10.1002/esp.1927
  • Stokes, A., Atger, C., Bengough, A.G., Fourcaud, T. & Sidle, R.C. (2009). Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant and Soil, 324(1-2), 1-30. doi: 10.1007/s11104-009-0159-y
  • Świtała, B.M. (2016). Analysis of slope stabilisation with soil bioengineering methods (PhD thesis). Vienna, Austria: University of Natural Resources and Life Sciences.
  • Świtała, B.M., Askarinejad, A., Wu, W. & Springman, S.M. (2018). Experimental validation of a coupled hydro-mechanical model for vegetated soil. Géotechnique, 68(5), 375-385. doi: 10.1680/jgeot.16.p.233
  • Waldron, L.J. & Dakessian, S. (1981). Soil reinforcement by roots. Soil Science, 132(6), 427-435. doi: 10.1097/00010694-198112000-00007
  • Wan, Y., Xue, Q. & Zhao, Y. (2011). Mechanism study and numerical simulation on vegetation affecting slope stability. Electronic Journal of Geotechnical Engineers, 16, 741-751.
  • Wu, T.H. (1976). Investigation of landslides on Prince of Wales Island, Alaska (Geotechnical Report 5). Ohio: Ohio State University, Department of Civil Engineering.
  • Zhang, C., Chen, L., Liu, Y., Ji, X. & Liu, X. (2010). Triaxial compression test of soil–root composites to evaluate influence of roots on soil shear strength. Ecological Engineering, 36(1), 19-26. doi:10.1016/j.ecoleng.2009.09.005
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e629acd-17ec-48b3-98d5-43ea5627e9cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.