PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Calibration and Evaluation of Aquacrop for Maize (Zea Mays L.) under Different Irrigation and Cultivation Methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Crop models of simulation are utilised effectively to evaluate the management of irrigation strategies which help in managing the water use. The aim of this study was to verify the validity of the Aquacrop model of maize under the surface and sprinkler irrigation systems, and a cultivation system, borders and furrows, and for two varieties of Maze (Fajr and Drakma) at two different sites in Iraq, i.e. the Babylon and Al-Qadisiyah governorates. The current study conducted an experiment to evaluate the Aquacrop model capacity in simulating canopy cover (CC), biomass (B), dry yield, harvest index (HI), and water productivity (WP). The results of RMSE, R2, MAE, d, NSE, CC, Pe indicated good results and high compatibility between the measured and simulated values. The highest achieved results were identical to the method of sprinkler irrigation due to the decrease in the amount of water consumed and the furrows cultivation method as the aerial roots were covered and the cultivar was Drakma. The highest values for the statistical data were R2 (90 and 96%), RMSE (0.60, 0.73), MAE (0.5, 0.67), d (0.97, 0.97), NSE (0.87, 0.90), for the Babylon and Al-Qadisiyah sites, respectively. As for the CC values, they were very compatible with the values of R2 and ranged between (92–99)%. The prediction error was Pe and minor errors were found. Thus, the Aquacrop model can be used reliably to evaluate the effectiveness of proposed irrigation management strategies for maize.
Słowa kluczowe
Rocznik
Strony
192--204
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
  • College of Agricultural Engineering Sciences, University of Baghdad, Baghdad, Iraq
  • Water Resources Engineering College, Al-Qasim Green University, Babylon, Iraq
  • College of Agricultural Engineering Sciences, University of Baghdad, Baghdad, Iraq
  • Ministry of Agriculture, Baghdad, Iraq
Bibliografia
  • 1. Abedinpour M., Sarangi A., Rajput T.B.S., Singh M., Pathak H., Ahmad T. 2012. Performance evaluation of AquaCrop model for maize crop in a semiarid environment. Agricultural Water Management, 110, 55–66.‏
  • 2. Abi Saab M.T., Todorovic M., Albrizio R. 2015. Comparing AquaCrop and CropSyst models in simulating barley growth and yield under different water and nitrogen regimes. Does calibration year influence the performance of crop growth models? Agricultural water management, 147, 21–33.
  • 3. Ali Z.A., Hassan D.F., Mohammed R.J. 2021. Effect of irrigation level and nitrogen fertilizer on water consumption and faba bean growth. In IOP Conference Series: Earth and Environmental Science, IOP Publishing, 722(1), 012043.
  • 4. Al-Khaled, Abdel-Hamid, Bakour F., Hajj A., Al-Ahmad S. 2008. Genetic behavior of some quantitative and qualitative traits in semi-cyclic hybridization in maize. Journal of Agriculture, Biotechnology and Chemical. Mansoura University, 1.
  • 5. Andarzian B., Bannayan M., Steduto P., Mazraeh H., Barati M.E., Barati M.A., Rahnama A. 2011. Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agric.Water Manag., 100, 1–8.
  • 6. Andreoli M., Tellarini V., Antrop M., Armstrong A., Aslam T., Choudhary M.A., Seligman N. G. 2000. Abernethy, VJ, see Downie, IS et al. Adam, N., see Sinclair, TR et al. Adamsen, FJ, see Sinclair, TR et al. Adesina A.A., Mbila D., Nkamleu G.B., Endamana D. Agriculture, Ecosystems and Environment, 81(235), 241.
  • 7. Arab Organization for Agricultural Development. 2008. The League of Arab States. The Agricultural Statistics in the Arab World – Annual Book of Agricultural Statistics.
  • 8. Araya A., Habtu S., Hadgu K.M., Kebede A., Dejene T. 2010. Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare). Agricultural Water Management, 97(11), 1838–1846.
  • 9. Araya A., Prasad P.V.V., Ciampitti I.A., Jha P.K. 2021. Using crop simulation model to evaluate influence of water management practices and multiple cropping systems on crop yields: A case study for Ethiopian highlands. Field Crops Research, 260, 108004.
  • 10. Bouman B.A.M., Van Keulen H., Van Laar H.H., Rabbinge R. 1996. The ‘School of de Wit’crop growth simulation models: a pedigree and historical overview. Agricultural systems, 52(2–3), 171–198.
  • 11. Chibarabada T.P., Modi A.T., Mabhaudhi T. 2020. Calibration and evaluation of aquacrop for groundnut (Arachis hypogaea) under water deficit conditions. Agricultural and Forest Meteorology, 281, 107850.
  • 12. FAO 2009. ETo Calculator, Land and Water Digital Media Series. Rome, 36.
  • 13. FAO. 2017. Training manual Using AcquaCrop model to evaluate the impact Of climate change on crop production.The Arab Center for the Studies of Arid Zones and Dry Lands (ACSAD).
  • 14. Fischer R.A., Byerlee D., Edmeades G. 2014. Crop yields and global food security. ACIAR: Canberra, ACT, 8–11.
  • 15. Giménez L. 2019. Aquacrop Model Evaluation in Maize Under Different Water Availabilities in the Western of Uruguay. International Journal of Plant, Animal and Environmental Sciences, 9(2), 103–117.
  • 16. Greaves G.E., Wang Y.M. 2016. Assessment of FAO AquaCrop model for simulating maize growth and productivity under deficit irrigation in a tropical environment. Water, 8(12), 557.
  • 17. Hammer G.L., Kropff M.J., Sinclair T.R., Porter J.R. 2002. Future contributions of crop modelling–from heuristics and supporting decision making to understanding genetic regulation and aiding crop improvement. European Journal of Agronomy, 18(1–2), 15–31.
  • 18. Hanushek E.A. 1974. Efficient estimators for regressing regression coefficients. The American Statistician, 28(2), 66–67.‏
  • 19. Hassan D.F., Jafaar A.A., Mohamm R.J. 2019. Effect of irrigation water salinity and tillage systems on some physical soil properties. Iraqi Journal of Agricultural Sciences, 50, 42–47.
  • 20. He Q., Li S., Hu D., Wang Y., Cong X. 2021. Performance assessment of the AquaCrop model for film-mulched maize with full drip irrigation in Northwest China. Irrigation Science, 39(2), 277–292.
  • 21. Heng L.K., Hsiao T., Evett S., Howell T., Steduto P. 2009. Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agronomy journal, 101(3), 488–498.‏
  • 22. IPCC (Intergovernmental Panel on Climate Change), 2001. The Third Assessment Report (TAR): Climate Change 2001 The Scientific Basis. Cambridge University Press for the Intergovernmental Panel on Climate Change.
  • 23. Jaafer A.A., Mohammed R.J., Hassan D.F. 2021. Studying The Thermodynamic Parameters For The Evaluation Of Potassium Availability By Adding Organic Matter.
  • 24. Jacovides C.P., Kontoyiannis H. 1995. Statistical procedures for the evaluation of evapotranspiration computing models. Agric Water Manage, 27, 365–371.
  • 25. Jin X., Li Z., Feng H., Ren Z., Li S. 2020. Estimation of maize yield by assimilating biomass and canopy cover derived from hyperspectral data into the AquaCrop model. Agricultural Water Management, 227, 105846.
  • 26. Kefale, Berhane A., Kefale D. 2018. Applications of Aqua crop Model for Improved Field ManagementStrategies and Climate Change Impact Assessment: A Review. Modern Concepts & Developments in Agronomy, 3(2).
  • 27. Kowalik W., Dabrowska-Zielinska K., Meroni M., Raczka T.U., de Wit A. 2014. Yield estimation using SPOT-VEGETATION products: A case study of wheat in European countries. International Journal of Applied Earth Observation and Geoinformation, 32, 228–239.
  • 28. Masasi B., Taghvaeian S., Gowda P.H., Marek G., Boman R. 2020. Validation and application of AquaCrop for irrigated cotton in the Southern Great Plains of US. Irrigation Science, 38(5), 593–607.
  • 29. Merriam J.L. 1995. Amangement control concept for determining the economical frequency of irrigation. ASAE. Annual Meeting. Baper, 65(206), 1–10.
  • 30. Mohammed R.J. 2018. The spatial variability of some chemical properties of gypsiferous soils by using GIS. International Journal of Agricultural and Statistical Sciences, 14(1), 303–312.
  • 31. Moksony F. & Heged R. 1990. Small is beautiful. The use and interpretation of R2 in social research. Szociológiai Szemle, 130–138.
  • 32. Mwiya R.M., Zhang Z., Zheng C., Wang C. 2020. Comparison of Approaches for Irrigation Scheduling Using AquaCrop and NSGA-III Models under Climate Uncertainty. Sustainability, 12(18), 7694.
  • 33. Pachauri R.K., Allen M.R., Barros V.R., Broome J., Cramer W., Christ R., van Ypserle J.P. 2014. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change Ipcc, 151.
  • 34. Paredes P., Torres M.O. 2017. Parameterization of AquaCrop model for vining pea biomass and yield predictions and assessing impacts of irrigation strategies considering various sowing dates. Irrig. Sci. 35, 27–41.
  • 35. Pawar G.S., Kale M.U., Lokhande J.N. 2017. Response of AquaCrop Model to Different Irrigation Schedules for Irrigated Cabbage.Agric. Res., 6, 73–81.
  • 36. Pragna G., Kumar G.M., Shankar M.S. 2016. Assessment of Cabbage yield under different discharge rate using Aquacrop Model. Progressive Research – An International Journal, 11, 3921–3924
  • 37. Raja, Waseem, Raihana H.K., Purshotum S. 2018. Validating the AquaCrop model for maize under different sowing dates. Water Policy, 20(4), 826–840.
  • 38. Sahuki, Medhat M. 1990. Maize Production and Improvement. Ministry of Higher Education and Scientific Research. Baghdad University.
  • 39. Sandhu R. & Irmak S. 2019. Assessment of AquaCrop model in simulating maize canopy cover, soil-water, evapotranspiration, yield, and water productivity for different planting dates and densities under irrigated and rainfed conditions. Agricultural Water Management, 224, 105753.‏
  • 40. Sandhu S.S., Mahal S.S., Kaur P. 2015. Calibration, validation and application of AquaCrop model in irrigation scheduling for rice under northwest India. Journal of Applied and Natural Science, 7(2), 691–699.
  • 41. Service, Washington, DC, EEUU, 372.
  • 42. Sinclair T.R. & Seligman N.A. 2000. Criteria for publishing papers on crop modeling. Field Crops Research, 68(3), 165–172.
  • 43. Smith M. & Steduto P. 2012. Yield response to water: the original FAO water production function. FAO Irrigation and Drainage Paper, (66), 6–13.
  • 44. SOE T. 2019. EFFECT OF IRRIGATION METHODS ON GRAIN MAIZE (Zea mays L.) PRODUCTION (Doctoral dissertation, Yezin Agricultural University).
  • 45. Soil Survey Staff. 2016. Keys to soil taxonomy. USDA, Natural Resources Conservation.
  • 46. Spellman F.R. 2018. The science of water: concepts and applications. CRC press.
  • 47. Stricevic R., Cosic M., Djurovic N., Pejic B., Maksi-movic L. 2011. Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize, sugar beet and sunflower. Agric. Water Manag., 98, 1615–1621.
  • 48. Vanuytrecht E., Raes D., Steduto P., Hsiao T.C., Fereres E., Heng L.K., Moreno P.M. 2014. AquaCrop: FAO’s crop water productivity and yield response model. Environmental Modelling & Software, 62, 351–360.
  • 49. Wandjie B.B., Lenouo A., Monkam D. 2020. Impact of potential evapotranspiration on maize yields in Northern Cameroon using AquaCrop model. International Journal of Hydrology Science and Technology, 10(1), 17–37.
  • 50. Willmott C.J. 1982. Some comments on the evaluation of model performance. Bull. Am. Meteor. Soc. 63, 1309–1313.
  • 51. Zhang Y., Guo J., Sun B., Fang H., Zhu D., Wang H. 2019. Modeling and dynamic-simulating the water distribution of a fixed spray-plate sprinkler on a lateral-move sprinkler irrigation system. Water, 11(11), 2296.
  • 52. Zhao Y., Li F., Jiang R. 2021. Irrigation schedule optimization based on the combination of an economic irrigation quota and the AquaCrop model. Irrigation and Drainage.
  • 53. Zhu X., Xu K., Liu Y., Guo R., Chen L. 2021. Assessing the vulnerability and risk of maize to drought in China based on the AquaCrop model. Agricultural Systems, 189, 103040.
  • 54. Zwain H.M., Almurshedi K.R., Vakili M., Dahlan I., Naje A.S. 2021. Water Quality and Radionuclides Content Assessment of the Al-Najaf Sea: Case Study. Journal of Ecological Engineering, 22(2)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e5a1ca2-fb98-46bf-b302-351e6a55a9b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.