PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Synchronization of the last-train timetable considering passenger transfer time

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Unsynchronized integrated lines in urban rail systems may cause some passengers to miss their last transfer chance. Therefore, passengers move faster in a swarm mentality to catch the last train. This study aims to synchronize the last-train timetable so that the maximum possible number of passengers can be transferred at the transfer stations by waiting for the minimum time. This paper provides a new approach to show that passengers who try to get to the last train at the transfer station move faster and describes the transfer processes with heuristic algorithms. In the case of the Istanbul urban rail system, passengers transfer to the last train 32% faster than average. To find the heuristic algorithm that defines the transfer processes of these passengers, particle swarm algorithms, dragonfly algorithms, and a simulated annealing algorithm were selected for comparison. The transfer times obtained with the particle swarm algorithm and the actual transfer times gave close results between 97.6% and 99.2%. The modified last-train timetable with predicted transfer time increases the number of successful transfers by 28%, decreasing the average waiting time of passengers from 197.27 seconds to 50.56 seconds. In addition, passengers wait 58 seconds less for the transfer to the last train by adjusting the timetable to the modified last train transfer time.
Czasopismo
Rocznik
Strony
215--228
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
autor
  • Istanbul Technical University, Faculty of Civil Engineering; Ayazağa Campus, 34469, Istanbul, Turkey
  • Istanbul Technical University, Faculty of Civil Engineering; Ayazağa Campus, 34469, Istanbul, Turkey
Bibliografia
  • 1. Mo, P. & Yang, L. & Wang, Y. & et al. A flexible metro train scheduling approach to minimize energy cost and passenger waiting time. Computers & Industrial Engineering. 2019. Vol. 132. P. 412-432.
  • 2. Zhu, K. & Cheng, Z. & Wu, J. & et al. Quantifying out-of-station waiting time in oversaturated urban metro systems. Communications in Transportation Research. 2022. Vol. 2. No. 100052. P. 1-11.
  • 3. Zhou, W. & Deng, L. & Xie, M. & et al. Coordination optimization of the first and last train's departure time on urban rail transit network. Advances in Mechanical Engineering. 2013. Vol. 2013. No. 848292. P. 1-12.
  • 4. Metro Istanbul. Passenger Statistics. 2023.
  • 5. Wu, J. & Liu, M. & Sun, H. & et al. Equity-based timetable synchronization optimization in urban subway network. Transportation Research Part C. 2015. Vol. 51. P. 1-18.
  • 6. Kang, L. & Wu, J. & Sun, H. & et al. A case study on the coordination of last trains for the Beijing subway network. Transportation Research Part B. 2015. Vol. 72. P. 112-127.
  • 7. Kang, L. & Zhu, X. & Wu, J. & et al. Departure time optimization of last trains in subway networks: mean-variance model and GSA algorithm. J. Comput. Civ. Eng. 2014. Vol. 29. P. 1-12.
  • 8. Kou, C. & He, S. & He, B. Study on connection optimization of last train departure time on urban mass transit network. Advanced Materials Research. 2014. Vol. 1030-1032. P. 2211-2214.
  • 9. Kang, L. & Zhu, X. Strategic timetable scheduling for last trains in urban railway transit networks. Applied Mathematical Modelling. 2017. Vol. 45. P. 209-225.
  • 10. Yin, H. & Wu, J. & Sun, H. & et al. Optimizing last trains timetable in the urban rail network: social welfare and synchronization. Transportmetrica B: Transport Dynamics. 2019. Vol. 7. P. 473-497.
  • 11. Kang, L. & Wu, J. & Sun, H. & et al. A practical model for last train rescheduling with train delay in urban railway transit networks. Omega. 2015. Vol. 50. P. 29-42.
  • 12. Chang, S.C. & Chung, Y.C. From timetabling to train regulation a new train operation model. Information and Software Technology. 2005. Vol. 47(9). P. 575-585.
  • 13. Niu, H. & Zhou, X. Optimizing urban rail timetable under time-dependent demand and oversaturated conditions. Transportation Research Part C. 2013. Vol. 36. P. 213-130.
  • 14. Khoshniyat, F. & Peterson, A. Robustness Improvements in a train timetable with travel time dependent minimum headways. In: the 6th International Conference on Railway Operations Modelling and Analysis - RailTokyo2015. Tokyo, March 23-26, 2015.
  • 15. Sels, P. & Dewilde, T. & Cattrysse, D. & et al. Reducing the passenger travel time in practice by the automated construction of a robust railway timetable. Transportation Research Part B. 2016. Vol. 84. P. 124-156.
  • 16. Wong, R.C. & Leung, J.M. Optimizing timetable synchronization for mass transit railway. Transportation Science. 2008. Vol. 42. No. 1. P. 57-69.
  • 17. Guo, X. & Sun, H. & Wu, J. & et al. Multiperiod-based timetable optimization for metro transit networks. Transportation Research Part B. 2017. Vol. 96. P. 46-67.
  • 18. Tian, X. & Niu, H. A bi-objective model with sequential search algorithm for optimizing networkwide train timetables. Computers & Industrial Engineering. 2019. Vol. 127. P. 1259-1272.
  • 19. Abdolmaleki, M. & Masoud, N. & Yin, Y. Transit timetable synchronization for transfer time minimization. Transportation Research Part B. 2019. Vol. 131. P. 143-159.
  • 20. Zhou, Y. & Wang, Y. & Yang, H. & et al. Last train scheduling for maximizing passenger destination reachability in urban rail transit networks. Transportation Research Part B. 2019. Vol. 129. P. 79-95.
  • 21. Li, W. & Xu, R. & Luo, Q. & et al. Coordination of last train transfers using automated fare collection (AFC) system data. Journal of Advanced Transportation. 2016. Vol. 50. P. 2209-2225.
  • 22. Yang, S. & Yang, K. & Gao, Z. & et al. Last-train timetabling under transfer demand uncertainty: mean-variance model and heuristic solution. Journal of Advanced Transportation. 2017. Vol. 2017(3). P. 1-13.
  • 23. Kang, L. & Meng, Q. Two-phase decomposition method for the last train departure time choice in subway networks. Transportation Research Part B. 2017. Vol. 104. P. 568-582.
  • 24. Ning, J. & Peng, Q. & Zhu, Y. & et al. A Bi-objective optimization model for the last train timetabling problem. Journal of Rail Transport Planning & Management, 2022. Vol. 23. No. 100333. P. 1-19.
  • 25. Chen, Y. & Mao, B. & Bai, Y. & et al. Optimal coordination of last trains for maximum transfer accessibility with heterogeneous walking time. Journal of Advanced Transportation. 2019. Vol. 2019. No. 692024. P. 1-13.
  • 26. Chen, Y. & Mao, B. & Bai, Y. & et al. Timetable synchronization of last trains for urban rail networks with maximum accessibility. Transportation Research Part C. 2019. Vol. 99. P. 110-129.
  • 27. Nie, W. & Li, H. & Xiao, N. & et al. Modeling and solving the last-shift period train scheduling problem in subway networks. Physica A. 2021. Vol. 569. No. 125775. P. 1-14.
  • 28. Huang, K. & Wu, J. & Liao, F. & et al. Incorporating multimodal coordination into timetabling optimization of the last trains in an urban railway network. Transportation Research Part C. 2021. Vol. 124. No. 102889. P 1-24.
  • 29. Wang, Y. & Zheng, C. & Shen, J. & et al. Last train delay management in a metro system: a multiobjective rescheduling optimization model. IEEE Access. 2022. Vol. 10. No. 110821.
  • 30. Zhang, S. & Ma, C. & Ma, C. & et al. Last train rapid synchronizing approach for maximum od accessibility with passengers’ effective travel route. J. Transp. Eng. Part A: Systems. 2023. Vol. 149(1). P. 1-13. DOI: 10.1061/JTEPBS.000077
  • 31. Li, W. & Luo, Q. A data-driven estimation method for potential passenger demand of last trains in metro based on external traffic data. Advances in Mechanical Engineering. 2019. Vol. 11(12). No. 168781401989835. P. 1-11.
  • 32. Li, W. & Xu, R. & Luo, Q. & et al. coordination of last train transfers using potential passenger demand from public transfer modes. IEEE Access. 2019. No. 7. P. 1-14.
  • 33. Kennedy, J. & Eberhart, R. Particle swarm optimization. In: Proceedings of ICNN'95 – International Conference on Neural Networks. 1995.
  • 34. Mirjalili, S. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single objective, discrete, and multi-objective problems. Neural Computing & Applications. 2016. No. 27. P. 1053-1073.
  • 35. Kang, L. & Zhu, X. A simulated annealing algorithm for first train transfer problem in urban railway networks. Applied Mathematical Modelling. 2016. No. 40. P. 419-435.
  • 36. Chen, Y. & Shi, C. & Claudel, G. & et al. First train timetable synchronization with interval trains in subway networks. Transportmetrica B: Transport Dynamics. 2023. Vol. 11. P. 69-92.
  • 37. Brooks, S.P. & Morgan, B.J.T. Optimization using simulated annealing. The Statistician. 1995. No. 2. P. 241-257.
  • 38. Van Laarhoven, P.J.M. & Aarts, E.H.L. Simulated Annealing:Theory and Applications. Eindhoven: Philips Research Laboratories. 1987. 195 p.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e4f7b51-0fb1-4676-8bd4-709e581d8c0d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.