PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modified pressure-pressure sound intensity measurement method and its application to loudspeaker set directivity assessment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sound intensity measurements using special sensors in a form of pressure-velocity and pressure-pressure probes are becoming more and more often the method of choice for characterization of sound sources. Its wider usability is blocked by the probes’ costs. This paper is on a possible modification of the well-known pressure-pressure sound intensity measurement method. In the proposed new approach a synchronized measurement procedure using only single microphone is used. The paper presents the basics of the sound intensity theory, a review of currently used methods of intensity measurement and requirements and limitations of the new method. In the proposed approach one microphone and a properly designed positioning system is used. The application of the method to study the directional characteristics of an active loudspeaker system have been described in detail. The obtained results were compared with those of measurements performed with a commercial p-u probe. The paper contains conclusions indicating advantages of the applied method in comparison with standard pressure measurement methods.
Rocznik
Strony
181--194
Opis fizyczny
Bibliogr. 18 poz., rys., wykr., wzory
Twórcy
  • West Pomeranian University of Technology Szczecin, Faculty of Electrical Engineering, Al. Piastów 17, 70-310 Szczecin, Poland
  • West Pomeranian University of Technology Szczecin, Faculty of Electrical Engineering, Al. Piastów 17, 70-310 Szczecin, Poland
Bibliografia
  • [1] Strutt, J. (2011).The Theory of Sound (Cambridge Library Collection - Physical Sciences). Cambridge: Cambridge University Press.
  • [2] Fahy, F.J. (1977). Measurement of acoustic intensity using the cross spectral density of two microphone signals. J. Acoust. Soc. Am., 62, 1057-1059.
  • [3] Fahy, F.J. (1995). Sound intensity. 2nd edition. London, England: E&FN Spon.
  • [4] Chung, J.Y. (1978). Cross-Spectral Method of Measuring Acoustic Intensity Without Error Caused by Instrument Phase Mismatch. J. Acoust. Soc. Am., 64, 1613-1616.
  • [5] Jacobsen, F. (2011). Sound intensity and its measurement applications. Lyngby, Denmark: B&K.
  • [6] Żyszkowski, Z. (1987). Acoustic measurements. WNT, Warszawa.
  • [7] Dobrucki, A. (2007). Elecrtoacoustic transducers. WNT, Warszawa.
  • [8] Farina, A. (2000). Simultaneous measurement of impulse response and distortion with a swept-sine technique. 110th Audio Engineering Society Convention.
  • [9] Bree de, H.E, (2003). An overview of Microflown Technologies. Acta Acustica, 89, 163-172.
  • [10] Mickiewicz, W., Raczynski, M. (2017). Mechatronic sound intensity 2D probe. Proc. of 22th Methods and Models in Automation and Robotics Conference, Międzyzdroje.
  • [11] Mickiewicz, W., Raczynski, M. (2018). Mechatronic sound intensity 3D probe and its Application to DOA. Proc. of 23th Methods and Models in Automation and Robotics Conference, Międzyzdroje.
  • [12] Rasmussen, G. (1985). Measurement of vector sound fields. Proc. 2nd Int. Congr., Acoustic Intensity, 53-58.
  • [13] Williams, E.G. (1999). Fourier Acoustics - Sound Radiation and Nearfield Acoustical Holography. Academic Press.
  • [14] Bellmann, C., Klippel, W., Knobloch D. (2015). Holographic loudspeaker measurement based on nearfield scanning. DAGA 2015 - 41th Convention, DEGA e.V.
  • [15] ISO 9614-2:1996. Acoustic - Determination of sound power levels of noise sources using sound intensity - Part 2: Measurement by scanning. International Organization for Standardization.
  • [16] Fasting, E., Bjor, O.H. (2018). A High-Performance Phase Correction Method for Sound Intensity Analysers. Proc. of Inter-Noice 2018 Conference, Chicago, Illinois.
  • [17] IEC 61672-1 PN-EN 61672, Electroacoustics - Sound level meters - Part 1 Specifications, International Standard, (2013)
  • [18] Kotus, J., Czyżewski, A., Kostek B. (2016). 3D Acoustic Field Intensity Probe Design and Measurements. Archives of Acoustics, 41(4), 701-711.
Uwagi
EN
1. The authors like to express their gratitude to Prof. Stefan Weyna for his scientific support and unconstraint access to the Microflown p–u probe and to Mr. Krzysztof Pietrusewicz, PhD, DSc, for unconstraint access to the National Instruments hardware.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e4c884d-f5e0-4c11-8c8c-d2efb2d7a82b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.