PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Coal Mining Waste and Its Mixtures with Sewage Sludge and Mineral Wool on Selected Properties of Degraded Anthropogenic Soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to evaluate the effect of coal mining waste and its mixtures with municipal sewage sludge and waste rock wool from cover crops on the formation of selected properties of degraded anthropogenic soil. Under the conditions of a pot experiment, coal mining waste and its mixtures with 2.5 and 5% sewage sludge and mixtures supplemented with 1% addition of waste rockwool from cover crops were introduced (in a ratio of 1:1) into the degraded anthropogenic soil. White mustard was grown on the substrates in the first year and maize in the second year. The pH, EC, and sorption properties were determined in soil samples taken before of the plants and after their harvest. The results showed that the addition of coal mining waste and its mixtures with municipal sewage sludge and waste rock wool improved the soil pH and sorption properties. The management of coal mining waste and waste optimising its properties for the production of fertilizing agents can be an effective strategy within a circular economy, which at the same time will increase the efficiency of the management of degraded and poor-quality soils.
Rocznik
Strony
340--350
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • Faculty of Agrobioengineering, Institute of Soil Science and Environment Shaping, University of Life Sciences in Lublin, ul. St. Leszczynskiego 7, 20-069 Lublin, Poland
  • Faculty of Agrobioengineering, Institute of Soil Science and Environment Shaping, University of Life Sciences in Lublin, ul. St. Leszczynskiego 7, 20-069 Lublin, Poland
  • Department of Geriatrics, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Jagiellonska 13/15, 85-067 Bydgoszcz, Poland
  • Faculty of Agrobioengineering, Institute of Soil Science and Environment Shaping, University of Life Sciences in Lublin, ul. St. Leszczynskiego 7, 20-069 Lublin, Poland
Bibliografia
  • 1. Adrian, D.C., 2001. Trace Elements in Terrestrial Environments Biogeochemistry Bioavailability and Risk of Metals, second ed. Springer-Verlag, New-York.
  • 2. Amaral, L.F., Delaqua, G.C.G., Nicolite, M., Marvila, M.T., de Azevedo, A.R., Alexandre, J., Monteiro, S.N., 2020. Eco-friendly mortars with addition of ornamental stone waste-A mathematical model approach for granulometric optimization. Journal of Cleaner Production, 248, 119283.
  • 3. Arias, O., Pulgar, J.A., Soto, M., 2022. Application of organic wastes to soils and legislative intricacies in a circular economy context. Clean Techn Environ Policy, 24, 1871-1888.
  • 4. Baran, S., Pranagal, J., Bik, M., 2008b. Possibilities of using Grodan mineral wool and sewage sludge to shape water properties in soils devastated in the Frash sulfur extraction process. Mineral Resources Management, 24(2/3), 81-96.
  • 5. Baran, S., Wójcikowska-Kapusta, A., Żukowska, G., 2006. Assessment of the suitability of sewage sludge and Grodan mineral wool for the reclamation of soilless soil based on the content of available forms of phosphorus, potassium and magnesium. Soil Science Annual, 57(1/2), 21-31.
  • 6. Baran, S., Wójcikowska-Kapusta, A., Żukowska, G., 2008a. The influence of sewage sludge and mineral wool on the content of humus and lead forms in the reclaimed soilless formation. Problem Books of Progress in Agricultural Sciences, 533, 31-38.
  • 7. Baran, S., Wójcikowska-Kapusta, A., Żukowska, G., Bik, M., 2008c. Sorption properties of a soilless formation reclaimed with sewage sludge and mineral wool. Problem Books of Progress in Agricultural Sciences, 533, 39-47.
  • 8. Baran, S., Wójcikowska-Kapusta, A., Żukowska, G., Bik, M., Szewczuk, Cz., Zawadzki, K., 2012. The role of mineral wool and sewage sludge in shaping the nitrogen content in the reclaimed soilless formation. Chemical industry, 91(6), 1259-1262.
  • 9. Bik-Małodzińska, M., Żukowska, G., Myszura, M., Wójcikowska-Kapusta, A., Mazur, J., 2021. The Changes in Physicochemical Properties in Soils Subjected to Many Years of Reclamation. Journal of Ecological Engineering, 22(2), 47-53. https://doi.org/10.12911/22998993/13087
  • 10. Bzowski, Z., Dawidowski, A., 2013. Monitoring właściwości fizykochemicznych odpadów wydobywczych pochodzących z kopalni węgla kamiennego LW „Bogdanka”. Zeszyty Naukowe Uniwersytetu Zielonogórskiego. Inżynieria Środowiska, 149(29), 87-96.
  • 11. Bzowski, Z., Szydel, R., Zarębski, K., Zawiślak, Z., 2010. Wytyczne dotyczące wykorzystania odpadów wydobywczych z kopalni Lubelski Węgiel „Bogdanka” do niwelacji i rekultywacji niecek osiadań poeksploatacyjnych. GIG S. z o.o. Lublin, 1-87.
  • 12. Chandra, A., Kumar, V., Usmani, Z., 2017. Impact of coal mining on soil properties and their efficient eco-restoration. International Journal of Energy Technology and Policy, 13(1/2)-158. 2017.
  • 13. Chojnacka, K.; Moustakas, K.; Witek-Krowiak, A., 2020. Bio-based fertilizers: A practical approach towards circular economy. Bioresour. Technol., 295, 122223.
  • 14. Chugh, Y.P., Behum, P.T., 2014. Coal waste management practices in the USA: an overview. Int J Coal Sci Technol, 1, 163-176.
  • 15. Darmody, R.G., Daniels, W.L., Marlin, J.C., Cremeens, D.L., 2009. Topsoil: What is it and who cares. In Annual Meetings Of The American Society Of Mining And Reclamation, 26, 15-22.
  • 16. Ellen MacArthur Foundation, Towards the Circular Economy. Economic and Business Rationale for an Accelerated Transition, Ellen MacArthur Foundation Report, 2013, https://www.aquafil.com/assets/uploads/ellen-macarthurfoundation. pdf (access 25.07.2023 r.).
  • 17. Fabbri, D., Pizzol, R., Calza, P., Malandrino, M., Gaggero, E., Padoan, E., Ajmone-Marsan, F., 2021. Constructed technosols: A strategy toward a circular economy. Applied Sciences, 11(8), 3432.
  • 18. FAO, 2006. World reference base for soil resources. A framework for international classification, correlation and communication. World Soil Resources Reports No. 103. Roma.
  • 19. Filho, A.J.R., Firpo, B.A., Broadhurst, J.L., Harrison, S.T., 2020. On the feasibility of South African coal waste for production of ‘FabSoil’, a Technosol. Minerals Engineering, 146, 106059.
  • 20. Filipek, T., Skowrońska, M., 2013. Current dominant causes and effects of acidification of soils under agricultural use in Poland. Acta Agrophysica, 20(2).
  • 21. Firpo, B.A., Filho, J.R.A, Schneider, I.A.H., 2015. A brief procedure to fabricate soils from coal mine wastes based on mineral processing, agricultural, and environmental concepts. Minerals Engineering, 76, 81-86.
  • 22. Firpo, B.A., Weiler, J., Schneider, I.A.H., 2021. Technosol made from coal waste as a strategy to plant growth and environmental control. Energy Geoscience, 2(2), 2021, 160-166.
  • 23. International Organization for Standardization. Soil Quality. In Determination of pH; ISO, 10390; ISO: Geneva, Switzerland, 2005.
  • 24. Kacprzak, M., Stańczyk-Mazanek, E., 2003. Changes in the structure of fungal communities of soil treated with sewage sludge. Biol Fertil Soils, 38, 89-95.
  • 25. Klatka, S., Malec, M., Kru, E., Ryczek, M., 2017. Evaluation of possibility of natural utilisation of coal mine waste used for surface levelling. Acta Agrophysica, 24(2), 253–262.
  • 26. Kołodziej, B., Bryk, M., Otremba, K., 2020. Effect of rockwool and lignite dust on physical state of rehabilitated post-mining soil. Soil and Tillage Research, 199, 104603.
  • 27. Kujawska, J., Pawłowska, M., 2020. Effect of drill cuttings addition on physicochemical and chemical properties of soil and red clover (Trifolium pretense L.) growth. PLOS ONE, 15(11), 1-6.
  • 28. Łabętowicz, J., Stępień, W., Kobiałak, M., 2019. Innovative technologies for processing waste into fertilizers of agroecological utility. Ecological Engineering, 20(1), 13-23.
  • 29. Lal, R., 2015. Restoring soil quality to mitigate soil degradation. Sustainability, 7(5), 5875-5895.
  • 30. Liu, R., Lal, R., 2014. Quality change of mine soils from different sources in response to amendments-A laboratory study. Environment and Natural Resources Research, 4(2), 20-39.
  • 31. Moreno-Barriga, F., Díaz, V., Acosta, J.A., Muñoz, M.A., Faz, A., Zornoza, R., 2017. Organic matter dynamics, soil aggregation and microbial biomass and activity in Technosols created with metalliferous mine residues, biochar and marble waste. Geoderma, 301, 19-29.
  • 32. OESD, 2019. Bisiness Models fos the Circular Economy. https://www.oecd.org/environment/ business-models -for-the-circular-economy-g2g9dd62-en.htm (access 25.07.2023r.).
  • 33. Patrzałek, A., Nowińska, K., 2013. Development of plant communities on mining waste tips subjected to various methods of reclamation. W: Dzieje Górnictwa – element europejskiego dziedzictwa kultury, 5 (red. Zagożdzona P.P i Madziarz M) Wrocław 2013, 297-306.
  • 34. Pham, D. T., Nguyen, H. N. T., Nguyen, L. V., Tran, O. V., Nguyen, A. V., Dinh, L. P. T., Vu, N. V., 2021. Sandy Soil Reclamation Using Biochar and Clay-Rich. Soil. Journal of Ecological Engineering, 22(6), 26-35. https://doi.org/10.12911/22998993/137445
  • 35. Pyssa, J., 2016. Extractive waste from hard coal mining in Poland – balance, status of management and environmental aspects. Energy and Fuels, 14.
  • 36. Rozporządzenie Ministra Klimatu z dnia 2 stycznia 2020 r. w sprawie katalogu odpadów. Dz.U. 2020 poz. 10.
  • 37. Rozporządzenie Ministra Środowiska z dnia 1 września 2016 r. w sprawie sposobu prowadzenia oceny zanieczyszczenia powierzchni ziemi. Dz.U. 2016 poz. 1395.
  • 38. Rozporządzenie Ministra Środowiska z dnia 15 lipca 2011 r. w sprawie kryteriów zaliczania odpadów wydobywczych do odpadów obojętnych. Dz.U. 2011 nr 175 poz. 1048.
  • 39. Ruiz, F., Cherubin, M.R., Ferreira, T.O., 2020. Soil quality assessment of constructed Technosols: Towards the validation of a promising strategy for land reclamation, waste management and the recovery of soil functions. Journal of Environmental Management, 276, 111344.
  • 40. Soil Survey Laboratory Methods Manual. Soil Survey Investigation Report; United States Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center: Washington, DC, USA, 1996.
  • 41. Ustawa z dnia 14 grudnia 2012 r. o odpadach. Dz.U. 2013 poz. 21.
  • 42. Watkinson, A.D., Lock, A.S., Beckett, P.J., Spiers, G., 2016. Developing manufactured soils from industrial by-products for use as growth substrates in mine reclamation Restor. Ecol., 25 (4), 587-594.
  • 43. Weiler, J., Firpo, B.A., Schneider, I. A., 2020. Technosol as an integrated management tool for turning urban and coal mining waste into a resource. Minerals Engineering, 147, 106179. Wójcikowska- Kapusta, A., Baran, S., Żukowska, G., Sugier, D., Sompor, M., 2012. Impact of sewage sludge on zinc and lead contents in reclaimed grounds. Chemical industry, 91(6), 1263-1266.
  • 44. Wójcikowska-Kapusta, A., Baran, S., Żukowska, G., Sugier, D., Sompor, M., 2012. Impact of sewage sludge on zinc and lead contents in reclaimed grounds. Chemical industry, 91(6), 1263-1266.
  • 45. Żukowska, G., Baran, S., Wójcikowska-Kapusta, A., Wesołowska-Dobruk, S., Kopiy, L., Bik-Małodzińska, M., 2014. Sewage sludge and mineral wool for reclamation of devastated soils and in forest management. Nauk. Visn. NLTU Ukr. Vipusk, 24(3), 71-80.
  • 46. Żukowska, G., Myszura-Dymek, M., Roszkowski, S., Olkiewicz, M., 2023. Selected Properties of Soil-like Substrates Made from Mine Coal Waste and Their Effect on Plant Yields. Preprints, 2023070756.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e4c0c82-3563-4bdd-8f04-9bb5c53c187b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.