PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of Lead From Blister Copper by Melting in the Induction Vacuum Furnace

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The usage of the reduced pressure in the processes of smelting and refining of metal alloys allow to remove not only the gases dissolved in the metal bath, but also the impurities having a higher vapour pressure than the matrix metal. Blister copper produced in flash furnace contains many impurities such as lead, bismuth and arsenic. Some of them must be removed from molten metals, because of their deleterious effects on copper electrical properties. When the smelting process is carried out in the induction vacuum furnaces, the above-mentioned phenomenon is being intensified, one or another mixing of bath and increase in the surface area of mass exchange (liquid metal surface). The latter results from the formation of a meniscus being an effect of the electromagnetic field influence on the liquid metal. In the work, the results of refining blister copper in terms of removing lead from it, are presented. The experiments were carried out in the induction crucible vacuum furnace at temperatures of 1473 and 1523 K, and operating pressures in a range of 8 - 533 Pa.
Rocznik
Strony
84--88
Opis fizyczny
Bibliogr. 16 poz., fot., tab., wykr.
Twórcy
autor
  • Silesian University of Technology, Department of Industrial Computer Science, Katowice, Poland
autor
  • Silesian University of Technology, Department of Metallurgy and Recycling Katowice, Poland
Bibliografia
  • [1] Blacha, L. (2001). Elimination of lead and antimony from copper and its alloys in the vacuum refining process. Gliwice: Wydawnictwo Politechniki Śląskiej. (in Polish).
  • [2] Hobler, T. (1976). Diffusive mass movement and absorbers. Warszawa: WNT. (in Polish).
  • [3] Ozberk, E. & Guthrie, R.I.L. (1986). Kinetic model for the vacuum refining stirred copper melts. Metallurgical Transactions B. 17B, 87-100. DOI: 10.1007/BF0267082.
  • [4] Rzadkosz, S. Kranz, M. Nowicki, P. & Piękoś, M. (2009). Refining processes of selected copper alloys. Archives of Foundry Engineering. 9(2), 29-34.
  • [5] Gawronski, J. Szajnar, J. Kalandyk, Z. & Lachowski, M. (1995). Gas refining of solidification copper castings in a magnetic field. Solidification of Metals and Alloys. 24, 201-206. (in Polish).
  • [6] Bellot, J.P. Duval, H. Ritchie, M. Mitchell, A. & Ablitzer, D. (2001). Evaporation of Fe and Cr from induction-stirred austenic stainless steel. ISIJ International. 41(7), 696-705. DOI: 10.2355/isijinternational.41.696.
  • [7] Harris, R. (1984). Vacuum refining copper melts to remove bismuth, arsenic, and antimony. Metallurgical Transactions B. 15B, 251-257. DOI: 10.1007/BF02667328.
  • [8] Ward, R.G. (1963). Evaporative losses during vacuum induction melting of steel. Journal of the Iron and Steel Institute. 1, 11-15.
  • [9] Harris, R. & Davenport, W.G. (1982). Vacuum distillation of liquid metals. Metallurgical Transactions B. 13B, 581-588. DOI: 10.1007/BF02669171.
  • [10] Golak, S. & Przyłucki R. (2009). A simulation of the coupled problem of magnetohydrodynamics and a free surface for liquid metals. WIT Transactions of Engineering Science. 48, 67-76. DOI: 10.2495/MPF090061.
  • [11] Golak, S. (2009). Application of image analysis for the measurement of liquid metal surface. WIT Transaction on Modelling and Simulation. 48, 169-177. DOI: 10.2495/CMEM090161.
  • [12] Węcki B. (2018). Analysis of the impact of the contact surface size of the liquid metallic phase - gas phase on the efficiency of the metal refining process in induction crucible furnaces. Unpublished doctoral dissertation, Silesian University of Technology, Gliwice. (in Polish).
  • [13] Blacha, L. Report from the research project MNiSZW 3T08B 05926. Kinetic model of the process of metal evaporation under reduced pressure (Unpublished, in Polish).
  • [14] Ohno, R.(1976). Rates of evaporation of silver, lead, and bismuth from copper alloys in vacuum induction melting, Metallurgical Transactions B. 7B, 647-653. DOI: 10.1007/BF02698598.
  • [15] Ohno, R. (1977). Rates of evaporation of silver, lead, bismuth, and sulphur from molten copper alloys stirred at different speeds under reduced pressure. Trans JIM. 18, 232-238. DOI: 10.2320/matertrans1960.18.232.
  • [16] Blacha, L. (2006). Elimination of Lead from Copper in Vacuum Refining Process. Rudy i Metale. 5, 255-260. (in Polish).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e4125c9-d9ef-4206-bc9b-394b7067ee59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.