PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Implementation of an artificial intelligence-based ECG acquisition system for the detection of cardiac abnormalities

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wdrożenie systemu pozyskiwania EKG opartego na sztucznej inteligencji w celu wykrywania nieprawidłowości serca
Języki publikacji
EN
Abstrakty
EN
The electrocardiogram (ECG) is a common test that measures the electrical activity of the heart. On the ECG, several cardiac abnormalities can be seen, including arrhythmias, which are one of the major causes of cardiac mortality worldwide. The objective for the research community is accurate and automated cardiovascular analysis, especially given the maturity of artificial intelligence technology and its contribution to the health area. The goal of this effort is to create an acquisition system and use artificial intelligence to classify ECG readings. This system is designed in two parts: the first is the signal acquisition using the ECG Module AD8232; the obtained signal is a single derivation that has been amplified and filtered. The second section is the classification for heart illness identification; the suggested model is a deep convolutional neural network with 12 layers that was able to categorize five types of heartbeats from the MIT-BIH arrhythmia database. The results were encouraging, and the embedded system was built.
PL
Elektrokardiogram (EKG) to powszechny test, który mierzy aktywność elektryczną serca. W zapisie EKG można zauważyć kilka nieprawidłowości serca, w tym arytmie, które są jedną z głównych przyczyn śmiertelności sercowej na całym świecie. Celem społeczności naukowej jest dokładna i zautomatyzowana analiza układu sercowo-naczyniowego, zwłaszcza biorąc pod uwagę dojrzałość technologii sztucznej inteligencji i jej wkład w obszar zdrowia. Celem tych wysiłków jest stworzenie systemu akwizycji i wykorzystanie sztucznej inteligencji do klasyfikacji odczytów EKG. System ten składa się z dwóch części: pierwsza to akwizycja sygnału za pomocą modułu EKG AD8232; uzyskany sygnał jest pojedynczą pochodną, która została wzmocniona i przefiltrowana. Druga sekcja to klasyfikacja identyfikacji chorób serca; sugerowany model to głęboka konwolucyjna sieć neuronowa z 12 warstwami, która była w stanie sklasyfikować pięć typów uderzeń serca z bazy danych arytmii MIT-BIH. Wyniki były zachęcające i zbudowano system wbudowany.
Rocznik
Strony
22--25
Opis fizyczny
Bibliogr. 19 poz., tab., wykr.
Twórcy
autor
  • Mohammed V University in Rabat, Ecole Nationale Supérieure d'Arts et Métiers, Electronic Systems Sensors and Nanobiotechnologies, Rabat, Morocco
  • Mohammed V University in Rabat, Ecole Nationale Supérieure d'Arts et Métiers, Electronic Systems Sensors and Nanobiotechnologies, Rabat, Morocco
  • Ecole Normale Supérieure de l'Enseignement Technique de Mohammadia, Electrical Engineering and Intelligent Systems, Hassan II University of Casablanca, Casablanca, Morocco
Bibliografia
  • [1] AD8232 DS. Single-Lead, Heart Rate Monitor Front End. Analog Device, 2013.
  • [2] Ahsan M. M., Siddique Z.: Machine learning-based heart disease diagnosis: A systematic literature review. Artificial Intelligence in Medicine 29, 2022, 102289 [http://doi.org/10.1016/j.artmed.2022.102289].
  • [3] Atal D. K., Singh M.: Arrhythmia classification with ECG signals based on the optimization-enabled deep convolutional neural network. Computer Methods and Programs in Biomedicine, 196, 2020, 105607 [http://doi.org/10.1016/j.cmpb.2020.105607].
  • [4] Day T. G. et al.: Artificial intelligence, fetal echocardiography, and congenital heart disease. Prenatal Diagnosis 41(6), 2021, 733–742 [http://doi.org/10.1002/pd.5892].
  • [5] Farinha J. M. et al.: Frequent premature atrial contractions as a signalling marker of atrial cardiomyopathy, incident atrial fibrillation and stroke. Cardiovascular research, 2022, cvac054 [http://doi.org/10.1093/cvr/cvac054].
  • [6] Giudicessi J. R. et al.: Artificial intelligence–enabled assessment of the heart rate corrected QT interval using a mobile electrocardiogram device. Circulation 143(13), 2021, 1274–1286 [http://doi.org/10.1161/circulationaha.120.050231].
  • [7] Han C. et al.: QRS complexes and T waves localization in multi-lead ECG signals based on deep learning and electrophysiology knowledge. Expert Systems with Applications 199, 2022, 117187 [http://doi.org/10.1016/j.eswa.2022.117187].
  • [8] Hassan S. U. et al.: Classification of cardiac arrhythmia using a convolutional neural network and bi-directional long short-term memory. Digital Health 8, 2022 [http://doi.org/10.1177/20552076221102766].
  • [9] Higuchi K. et al.: How to use bipolar and unipolar electrograms for selecting successful ablation sites of ventricular premature contractions. Heart Rhythm 19(7), 2022, 1067–1073 [http://doi.org/10.1016/j.hrthm.2021.12.035].
  • [10] Karri M., Annavarapu C. S.: A real-time embedded system to detect QRS-complex and arrhythmia classification using LSTM through hybridized features. Expert Systems with Applications 214, 2023, 119221 [http://doi.org/10.1016/j.eswa.2022.119221].
  • [11] Kwon J. M. et al.: Artificial intelligence assessment for early detection of heart failure with preserved ejection fraction based on electrocardiographic features. European Heart Journal-Digital Health 2(1), 2021, 106–116 [http://doi.org/10.1093/ehjdh/ztaa015].
  • [12] Li T., Zhou M.: ECG classification using wavelet packet entropy and random forests. Entropy 18(8), 2016, 285 [http://doi.org/10.3390/e18080285].
  • [13] Moody G. B., Mark R. G.: The impact of the MIT-BIH arrhythmia database. IEEE engineering in medicine and biology magazine 20(3), 2001, 45–50 [http://doi.org/10.1109/51.932724].
  • [14] Rahman M. A. et al.: Remote monitoring of heart rate and ECG signal using ESP32. 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), 2021, 604–610 [http://doi.org/10.1109/AEMCSE51986.2021.00127].
  • [15] Reis C. Q., Robar J. L.: Evaluation of the feasibility of cardiac gating for SBRT of ventricular tachycardia based on real‐time ECG signal acquisition. Journal of Applied Clinical Medical Physics, 2022, e13814 [http://doi.org/10.1002/acm2.13814].
  • [16] Ribeiro J. M. et al.: Artificial intelligence and transcatheter interventions for structural heart disease: a glance at the (near) future. Trends in cardiovascular medicine 32(3), 2022, 153–159 [http://doi.org/10.1016/j.tcm.2021.02.002].
  • [17] Vamseekrishna A. et al.: Low-Cost ECG-Based Heart Monitoring System with Ubidots Platform. Embracing Machines and Humanity Through Cognitive Computing and IoT, 2023 [http://doi.org/10.1007/978-981-19-4522-9_6].
  • [18] Vinther M. et al.: A randomized trial of His pacing versus biventricular pacing in symptomatic HF patients with left bundle branch block (His-alternative). Clinical Electrophysiology 7(11), 2021, 1422–1432 [http://doi.org/10.1016/j.jacep.2021.04.003].
  • [19] Zhu K. et al.: The physiologic mechanisms of paced QRS narrowing during left bundle branch pacing in right bundle branch block patients. Frontiers in Cardiovascular Medicine 9, 2022 [http://doi.org/10.3389/fcvm.2022.835493].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e3c3e13-d95f-4462-989a-11b0309feb4f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.