Identyfikatory
Warianty tytułu
Projekt trójfazowego falownika wielopoziomowego wykorzystującego ogniwo SC do zastosowań fotowoltaicznych
Języki publikacji
Abstrakty
In this study, a three-phase multilevel inverter (MLI) with low total harmonic distortion (THD) was developed, and it was found to be feasible by using a switched capacitor cell. Using just a single capacitor, a single DC supply, and nine switches, it can produce nine distinct inverter levels. The suggested inverter's gain and output voltage may need to be raised as the number of SC cells in use grows. Changing the input voltage's connection to the SC from series to parallel is accomplished by reversing the direction of electric charge flowing through the capacitor. The simulation results of the proposed model prove that 9-level inverter may be achieved using a single SC. The LTspice program was used to effectively compare the proposed topology to alternative, analogous MLI topologies. The proposed design is shown to lower total harmonic distortion (THD), while simultaneously using fewer components and a less complicated controller. The proposed inverter consumes less space and costs less because it uses fewer components. There were two types of loads used in this system: an ohmic load and an inductive ohmic load.
W tym badaniu opracowano trójfazowy wielopoziomowy falownik (MLI) o niskim całkowitym zniekształceniu harmonicznym (THD), który okazał się wykonalny przy zastosowaniu przełączanego ogniwa kondensatora. Używając tylko jednego kondensatora, jednego źródła prądu stałego i dziewięciu przełączników, można wytworzyć dziewięć różnych poziomów falownika. W miarę wzrostu liczby używanych ogniw SC może zaistnieć potrzeba zwiększenia sugerowanego wzmocnienia falownika i napięcia wyjściowego. Zmiana połączenia napięcia wejściowego do SC z szeregowego na równoległe odbywa się poprzez odwrócenie kierunku ładunku elektrycznego przepływającego przez kondensator. Wyniki symulacji zaproponowanego modelu dowodzą, że przy użyciu jednego SC można uzyskać 9-poziomowy falownik. Do efektywnego porównania zaproponowanej topologii z alternatywnymi, analogicznymi topologiami MLI wykorzystano program LTspice. Wykazano, że proponowany projekt obniża całkowite zniekształcenia harmoniczne (THD), przy jednoczesnym wykorzystaniu mniejszej liczby komponentów i mniej skomplikowanego sterownika. Proponowany falownik zajmuje mniej miejsca i kosztuje mniej, ponieważ wykorzystuje mniej komponentów. W tym systemie zastosowano dwa rodzaje obciążeń: obciążenie omowe i obciążenie indukcyjne omowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
248--254
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- Electrical Engineering Department, College of Engineering, University of Hail, Hail 55211, Saudi Arabia
Bibliografia
- 1 M. Norambuena, S. Kouro, S. Dieckerhoff, and J. Rodriguez, "Reduced Multilevel Converter: A Novel Multilevel Converter With a Reduced Number of Active Switches", IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 3636-3645, May. 2018.
- 2 V Monteiro, JC Ferreira, AAN Meléndez, and J. L. Afonso, "Model predictive control applied to an improved five-level bidirectional converter", IEEE Trans. Ind. Electron., vol. 63, no. 9, pp. 5879-5890, Sept. 2016.
- 3 A. Alateeq, and M. Matin, “A Novel Design of a High Gain Step-up Converter Using Switched-Capacitors/Switched-Inductors Cells”, in 2018 IEEE International Conference on Electro Information Technology (EIT), (in the Press).
- 4 B. Chen, W. Yao, and Z. Lu, "Novel five-level three-phase hybridclamped converter with reduced components," J. Power Electron., vol. 14, no. 6, pp. 1119-1129, Nov. 2014.
- 5 M. D. Seeman and S. R. Sanders,”Analysis and Optimization of Switched-Capacitor DC-DC Converters” in IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 841-851,March 2008.
- 6 A. Alateeq, Y. Almalaq and M. Matin,”Using SiC MOSFET in switched-capacitor converter for high voltage applications” 2016 North American Power Symposium (NAPS), Denver, CO, 2016, pp. 1-5.
- 7 S. Xiong, S. C. Wong, S. C. Tan, and C. K. Tse, “A Family of Exponential Step-Down Switched-Capacitor Converters and Their Applications in Two-Stage Converters” IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1870–1880, 2014.
- 8 P. Pérez-Nicoli, P. C. Lisboa, F. Veirano, and F. Silveira, “A series–parallel switched capacitor step-up DC–DC converter and its gate-control circuits for over the supply rail switches” Analog Integr. Circuits Signal Process., vol. 85, no. 1, pp. 37–45, 2015.
- 9 P. Pérez-Nicoli, P. C. Lisboa, F. Veirano, and F. Silveira, “A series–parallel switched capacitor step-up DC–DC converter and its gate-control circuits for over the supply rail switches” Analog Integr. Circuits Signal Process., vol. 85, no. 1, pp. 37–45, 2015.
- 10 Alateeq, Y. Almalaq, and M. Matin, A Performance of the Soft Charging Operation in Series of Step-Up Power Switched-Capacitor Converters, Journal of Low Power Electronics and Applications, vol. 8, no. 1, p. 8, Mar. 2018.
- 11 Alateeq, A.; Almalaq, Y.; Alateeq, A. Optimization of a Multilevel Inverter Design Used for Photovoltaic Systems under Variable Switching Controllers. Processes 2022, 10, 1159. https://doi.org/10.3390/pr10061159
- 12 P. A. Arbune and A. Gaikwad, "Comparative Study of Three level and five level Inverter", International Journal of Advanced Research in Electrical Electronics and Instrumentation Engineering, vol. 5, no. 2, pp. 681-686, Feb 2016.
- 13 J. Rodriguez, J. S. Lai and F. Z. Peng, "Multilevel inverters: a survey of topologies controls and applications", IEEE Transactions on industrial electronics, vol. 49, no. 4, pp. 724-738, Nov 2002.
- 14 Ramos-Paja, C.A.; Bastidas-Rodriguez, J.D.; Saavedra-Montes, A.J. Low-Voltage Photovoltaic System Based on a Continuous Input/Output Current Converter. Computation 2023, 11, 42. https://doi.org/10.3390/computation11020042
- 15 Khemili, F.Z.; Bouhali, O.; Lefouili, M.; Chaib, L.; El-Fergany, A.A.; Agwa, A.M. Design of Cascaded Multilevel Inverter and Enhanced MPPT Method for Large-Scale Photovoltaic System Integration. Sustainability 2023, 15, 9633. https://doi.org/10.3390/su15129633
- 16 M. Jayabalan, B. Jeevarathinam and T. Sandirasegarane, "Reduced switch count pulse width modulated multilevel inverter," in IET Power Electronics, vol. 10, no. 1, pp. 10-17,2017.
- 17 N. Motaparthiand and K. Malligunta, " Seven-Level Symmetrical Series/Parallel Multilevel Inverter with PWM Technique Using Digital Logic," International Journal of Electrical and Computer Engineering Systems (IJECES), vol. 12, no. 3, pp. 123-130, 2021.
- 18 E. Najafi and A. H. Yatim, "Design and implementation of a new multilevel inverter topology", IEEE Transactions on Industrial Electronics, vol. 59, no. 11, pp. 4148-4154, Nov 2011.
- 19 J. J. Nedumgatt, D. V. Kumar, A. Kirubakaran and S. A. Umashankar, "multilevel inverter with reduced number of switches", 2012 IEEE Students' Conference on Electrical Electronics and Computer Science, pp. 1-4, 2012 Mar 1.
- 20 K. Ramani, M.A. Sathik, S Sivakumar, " A New Symmetric Multilevel Inverter Topology Using Single and Double Source Sub-Multilevel Inverters", Journal of Power Electronics, Volume15, Issue 1, 2015, pp.96-105.
- 21 V. Thiyagarajan and P. Somasundaram, " A New Seven Level Symmetrical Inverter with Reduced Switch Count", International Journal of Power Electronics and Drive System (IJPEDS), vo9, no. 2, pp. 921-925, 2018.
- 22 T. T. Tran, and M. K. Nguyen "Cascaded five-level quasi-switchedboost inverter for single-phase grid-connected system", IET Power Electron., vol. 10, no. 14, pp. 1896-1903, Nov. 2017.
- 23 M. K. Nguyen, & T. T. Tran, “Quasi cascaded H-bridge five-level boost inverter,” IEEE Trans. Ind. Electron.,” vol. 64, no. 11, pp. 8525-8533, Nov. 2017.
- 24 E. Babaei, S. Laali and Z. Bayat, "A single-phase cascaded multilevel inverter based on a new basic unit with reduced number of power switches", IEEE Transactions on industrial electronics, vol. 62, no. 2, pp. 922-929, Jul 2014.
- 25 Y Hu, Y Xie, L Cheng, and D Fu., "Characteristics analysis of a new single-phase π-type five-level inverter", IET Power Electron., vol. 9, no. 6, pp. 1290-1296. May. 2016.
- 26 A. V. Ho, & T. W. Chun, “Single-Phase Modified Quasi-Z-Source Cascaded Hybrid Five-Level Inverter”, IEEE Trans. Ind. Electron., vol. 65, no. 6, pp. 5125-5134, Jun. 2018
- 27 Piccini, A.R.; Guimarães, G.C.; Souza, A.C.d.; Denardi, A.M.Implementation of a Photovoltaic Inverter with Modified Automatic Voltage Regulator Control Designed to Mitigate Momentary Voltage Dip. Energies 2021, 14, 6244. https://doi.org/10.3390/en14196244
- 28 Chung, D.D.L. First Review of Conductive Electrets for Low-Power Electronics. J. Low Power Electron. Appl. 2023, 13, 25. https://doi.org/10.3390/jlpea13020025
- 29 Karasani, R.R.; Borghate, V.B.; Meshram, P.M.; Suryawanshi, H.M.; Sabyasachi, S. A Three-Phase Hybrid Cascaded Modular
- 30 Multilevel Inverter for Renewable Energy Environment. IEEE Trans. Power Electron. 2017, 32, 1070–1087
- 31 Lee, S.S.; Bak, S.Y.; Kim, A.; Joseph, M.; Lee, K.B. New Family of Boost Switched-Capacitor Seven-Level Inverters (BSC7LI). IEEE Trans. Power Electron. 2019, 34, 10471–10479
- 32 Sathik, M.J.; Sandeep, N.; Blaabjerg, F. High Gain Active Neutral Point Clamped Seven-Level Self-Voltage Balancing Inverter. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 2567–2571.
- 33 Sandeep, N.; Ali, J.S.M.; Yaragatti, U.R.; Vijayakumar, K. ASelf-Balancing Five-Level Boosting InverterWith Reduced Components. IEEE Trans. Power Electron. 2019, 34, 6020–6024
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2e3bb5f5-b45e-4fb2-b68e-e1f70bfc7c41
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.